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Abstract 

Processing and manipulating structured data with Language Models has become vital for various use cases. However, not all 

language models may follow the expected output consistently, necessitating reattempts until the requirements are met. Repeated 

queries increase the resources and time required to process the information. Such problems necessitate effective Prompt Engineer-

ing and testing across various test cases. Prompt Engineering, when performed without automation, requires a larger workforce 

and significant time and resources. An alternative approach, such as Prompt Tuning, introduces further challenges. To solve all 

the challenges, this research proposes an AI-driven automated prompt optimization system designed to enhance the accuracy of 

prompts for various AI applications, using minimal time and resources. By iteratively testing prompts using a smaller language 

model and adjusting the prompt with the help of a Large Language Model until optimal performance is achieved, the system 

automates the process of optimizing prompts. Without requiring a training process before optimization, this approach ensures the 

reusability and transparency of optimized prompts to use across different language models. The system uses the expected output 

to offer a way for organizations to overcome the difficulties associated with manual-only prompt engineering. The system offers 

a solution to create concise, high-quality prompts that yield the desired accuracy. During the experiment, the system achieved the 

expected accuracy using only two iterations. The prompt led to satisfactory accuracy using multiple Language Models, proving 

the reusability of the prompt. 
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Introduction 

Structured data is essential to numerous organizations. Lan-

guage Models (LMs) have a large knowledge base. Processing 

structured data in formats such as CSV and JSON using LMs 

requires optimal prompts to ensure the model responds in the 

expected structure. “Prompting is programming.” [1] Making 

models respond by following our requirements involves chal-

lenges [2]. Language models were often found to miss some 

parts or add unnecessary parts that are not required. Overcoming 

such challenges involves multiple methods, including Prompt 

Engineering, Prompt Tuning, and Fine-tuning an LM. More 

methods include querying repeatedly until the model responds 

in the expected format and using a larger model by expecting a 

response in the expected structure. Repeated queries consume 

more time and resources. 

Challenges with Other Approaches 

Manual-only prompt engineering requires significant time, re-

sources, and workforce. Numerous iterations are required to at-

tain an acceptable accuracy. Human experts often miss crafting 

the optimal prompt or lack prompting skills [2]. The approach 

of Prompt Tuning [3] involves challenges and may fail to 

achieve the same results as Prompt Engineering. It relies on the 

performance of an optimization algorithm. It involves an addi-

tional step of tuning the prompt parameters. 

Soft prompting is flexible as it involves embeddings instead of 

fixed prompts. However, it can be challenging to interpret and 

control, as the internal representations are not transparent and 

hard to trust directly [4]. Fine-tuning the model consumes time 

and resources. Fine-tuning does not always ensure satisfactory 

accuracy for the requirements [5]. In the current pace of new 

models getting released, switching to a newer model is not flex-

https://najer.org/najer


 

Volume 5 Issue 1, January – April 2024 
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

https://najer.org/najer 
 

ible in the case of fine-tuning. These methods need special algo-

rithms or training datasets, which have the potential to reduce 

their generalizability to new or unseen tasks. 

Automated Prompt Optimization and Its Benefits 

This paper proposes a system for automated optimization of 

prompts, which ensures transparency in the prompts and the re-

usability of the prompts across multiple models. This approach 

does not involve a training process and ensures the same ad-

vantages as alternative approaches without the same disad-

vantages. Prompts have interpretability and can be understood 

by anyone who is not an expert in developing LMs. 

Advantages of Small Language Models 

When compared to larger models, smaller models are faster and 

consume lesser resources [6], which allows them to process a 

large amount of data in less time. Smaller models are being de-

veloped rapidly. When using smaller models, prompts should be 

optimized to ensure reliability. 

Literature Review 

MAPO [7] and Robust Prompt Optimization [8] have improved 

model-specific prompt tuning and robustness against distribu-

tion shifts, but they rely on task-specific data and manual inter-

vention. Even though approaches such as APE [9] and AutoHint 

[10] automate some aspects of prompt engineering, their focus 

is not on processing structured data and requires datasets for 

training. Existing research on prompt optimization focused on 

adaptability and robustness and left a gap in the effectiveness 

and scalability of handling structured data using language mod-

els while ensuring the reusability of the responses and interpret-

ability of prompts. 

Despite the progress of advancements, gaps exist in interaction 

with unseen scenarios, scalability, robustness, and adaptation to 

task complexity. Addressing such gaps remains pivotal for fur-

ther progress in Prompt Optimization for LMs. Existing research 

focuses on automated prompt tuning and soft prompting, leaving 

a research gap in automated Prompt Engineering to make lan-

guage models process structured data efficiently, unlike pro-

cessing unstructured data. Existing work uses datasets for train-

ing. However, the system proposed in this paper uses only an 

existing prompt and the expected output. The system does not 

undergo a training process, which consumes extra resources, 

time, and additional workforce for various organizations such as 

startups and non-profits. 

Methods 

Testing the Initial Prompt using Expected Output 

GPT-4 Turbo [11] is the Large Language Model selected to re-

write the prompts. Claude Instant 1.2 [12] is the smaller model 

selected for affordable usage to test the prompts. An initial 

prompt template, as well as the expected response, are written 

for the experiment. Ten trials are conducted using the small LM 

to check the accuracy of the initial prompt. 

Prompt Template 1. Initial Prompt Template from the User 

Here is input data: {structured_input_data}. 

Provide the name and age of people whose age is below 35. 

Sample Value 1. Structured Sample CSV Data Provided as Input 

```csv 

Name,Gender,Age,City 

John,Male,25,NYC 

Jane,Female,30,LA 

Doe,Male,38,Chicago 

Emily,Female,48,Houston 

Henry,Male,66,Philadelphia 

``` 

Sample Value 2. Expected Structured CSV Response 

```csv 

Name,Age 

John,25 

Jane,30 

``` 

Sample Value 3. Structured Sample JSON Data Provided as Input 

```json 

[ 

    {"Name": "John", "Gender": "Male",  

        "Age": 25, "City": "NYC"}, 

 

    {"Name": "Jane", "Gender": "Female",  

        "Age": 30, "City": "LA"}, 

 

    {"Name": "Doe", "Gender": "Male",  

        "Age": 38, "City": "Chicago"}, 

 

    {"Name": "Emily", "Gender": "Female",  

        "Age": 48, "City": "Houston"}, 

 

    {"Name": "Henry", "Gender": "Male",  

        "Age": 66, "City": "Philadelphia"} 

] 

```  

Sample Value 4. Expected Structured JSON Response 

```json 

[ 

    {"Name": "John", "Age": 25}, 

    {"Name": "Jane", "Age": 30} 

] 

``` 
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Optimizing Prompts using the Larger Model 

A prompt is assumed as optimal if it leads to at least 90% accu-

racy. The larger model is used to evaluate the prompt and re-

sponse against the expected response to attempt to optimize the 

prompt template. The accuracy of the smaller model is checked 

again using the new prompt. The prompt template is regenerated 

up to five times until an optimal prompt template has been gen-

erated. 

Prompt Template 2. Prompt to Optimize the Current Prompt 

Value of structured_input_data variable (includes 

backticks): 

{structured_input_data}  

 ---  

Processing criteria (from Initial Prompt): 

{processing_criteria} 

 ---  

Current prompt template: {current_prompt_template}  

 ---  

Accuracy of current prompt: {current_accuracy}  

Current response: {current_response}  

 ---  

Expected response: {expected_response}  

 ---  

 
Act as a Prompt Engineer and an expert Linguist. Write 

prompt to process structured data using language 

model. Rewrite prompt template to generate expected 

response (including its special characters and back-

ticks). Use example_response placeholder to indicate a 

sample response. Don't add your own sample in the 

template. 

 

Don't include answer or expected response. CSV re-

sponses must include expected column names without 

extra columns. Write only new prompt template with-

out any other text. At last, emphasize on the processing 

criteria I mentioned. Backticks and format must be ex-

actly same as the example response. 

 

Avoid backticks like ```. Mention "{structured_in-

put_data}" placeholder to indicate input data. Make 

sure response includes backticks. Don't miss both 

placeholders mentioned in curly braces. Add "**Write 

like**: {example_response}" as placeholder to men-

tion example response. 

Shortening the Prompt using the Larger Model 

After constant improvement, the final prompt would be much 

longer than the initial prompt. Hence, concise prompts are gen-

erated. If the accuracy produced by the shorter prompt is the 

same as the optimized prompt, it is considered to be used. 

Prompt Template 3. Prompt to Shorten the Current Prompt 

Current prompt template: 

{current_prompt_template} 

--- 

Be a Prompt Engineer. Shorten the above prompt tem-

plate. Make sure the prompt is short and concise. Re-

tain the placeholders values and key information. Do 

not remove placeholders 'structured_input_data' and 

'example_response'. Return only the shortened prompt 

without any other text. When a language model uses 

the prompt to generate response, backticks and format 

must be exactly same as the example response. Make 

sure response from the model includes the formatted 

data inside backticks with the format like 

{current_response} 

Testing the Prompt using Multiple Language Models 

Final testing is performed on multiple models to explore the re-

usability of the prompts generated by the system. Claude Instant 

1.2 [12], GPT 3.5 Turbo [13], and Llama 2 (13B) [14] are the 

smaller LMs that are selected. GPT-4 Turbo [11] is a large 

model selected to experiment on whether using a large model 

would result in accurate structured responses. 

Results 

Generating Prompts using the Larger Model 

Optimal prompts were generated successfully by the large 

model using only two iterations of optimizing prompts in both 

CSV and JSON test cases. Shortening the prompt has led to a 

reduction in the accuracy for five attempts for both test cases. 

Prompt Template 4. Optimized Prompt for CSV test case 

Please filter the data contained within  

{structured_input_data} to identify individuals who 

are younger than 35 years old and provide a CSV for-

matted list that includes only their Name and Age. En-

sure the output is presented with the exact column 

headers as in the input data and that it is enclosed 

within backticks, consistent with  

{example_response}. 

Apply special attention to meet the specified pro-

cessing criteria and maintain the integrity of the CSV 

format, including leading and enclosing backticks. 

 

**Write like**: {example_response} 

Prompt Template 5. Optimized Prompt for JSON test case 

Given the following data in JSON format: 

{structured_input_data}, extract and provide the name 

and age of individuals who are under the age of 35 in 

the same JSON format. Ensure that your output 

matches the precise structure depicted here: 

**Write like**: {example_response} 
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Testing the Prompt using Multiple Language Models 

The accuracy has been tested on multiple models using the same 

prompt to test the reusability. Common mistakes included back-

ticks (```) not found as per the example response to indicate the 

structured data and the format “CSV” or “JSON” not being men-

tioned by the model in the response. Rarely did the models re-

turn Python code to process the data, or extra rows were added 

without removal based on the criteria. For the JSON test case, 

Claude displayed satisfactory accuracy with the initial prompt, 

and hence, GPT-3.5 Turbo was used as the base small model. 

The prompt optimized for Claude has been optimal for Llama 2 

(with an accuracy of 80%) even though the prompt was not op-

timized for Llama 2. The prompt can be further engineered to 

make other models respond in the expected format. 

 

TABLE I.  ACCURACY USING EACH PROMPT WITH MULTIPLE MODELS IN 

CSV TEST CASE 

Model 
Accuracy using each prompt 

Initial Prompt Optimized Prompt 

Claude Instant 0% 90% 

GPT-3.5 Turbo 40% 90% 

GPT-4 Turbo 10% 100% 

Llama 2 0% 0% 

TABLE II.  ACCURACY USING EACH PROMPT WITH MULTIPLE MODELS IN 

JSON TEST CASE 

Model 
Accuracy using each prompt 

Initial Prompt Optimized Prompt 

GPT-3.5 Turbo 0% 100% 

Claude Instant 90% 100% 

GPT-4 Turbo 0% 100% 

Llama 2 0% 80% 

 

Discussion and Limitations 

The purpose of this study is only to experiment with an iterative 

approach to automate the Prompt Engineering process. The sys-

tem has the possibility to make a difference in the efficiency of 

processing structured data for various organizations. This study 

involves the usage of only text and does not involve multimodal 

data such as images. Standard benchmarks can be used to test 

the system and compare it against base models. The system has 

not been experimented with to handle “impossible responses,” 

such as harmful responses, which most of the language models 

refuse to generate. This research does not involve handling when 

the input, prompt, or expected response has more tokens than 

what the model is designed to process. The system proposed in 

this paper is used to evaluate a new approach of prompt engi-

neering to process structured data. However, it is not tested us-

ing a wide variety of test cases and data formats other than CSV 

and JSON. 

Conclusion 

In order to address the inefficiencies of manual-only prompt en-

gineering and the limitations of alternative approaches like fine-

tuning and prompt tuning, this paper presents an AI-driven 

method to optimize prompts. Using a larger model did not en-

sure a satisfactory accuracy of the response structure, and auto-

mated prompt engineering has been beneficial. The system pro-

posed in this paper has generated successful prompts to process 

structured data using language models. The system has success-

fully automated the process of improving prompts using only 

two iterations, ensuring satisfactory accuracy without necessi-

tating large training datasets or the consumption of huge 

amounts of resources. It was proved that the final optimized 

prompts could be reused with other language models in both 

CSV and JSON test cases, proving the reusability of the prompt. 

The system failed in the attempts to use a language model to 

further shorten the prompts to achieve a balance between prompt 

conciseness and response accuracy. Future work might include 

testing the system with a broader range of response structures, 

diverse test cases, and numerous language models, further en-

hancing the robustness and scalability of the automated optimi-

zation of prompts. 
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