
North American Journal of Engineering and Research

Est. 2020

Volume 1 Issue 2, April – June 2020

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

Advanced Data Transformation Techniques in Apache

Spark
 Ravi Shankar Koppula

Email: Ravikoppula100@gmail.com

Abstract

In the age of big data, effective data manipulation is essential for extracting valuable insights and powering sophisticated analytics.

Apache Spark has become a prominent platform for processing large volumes of data, allowing organizations to manage extensive

datasets with speed and adaptability. This piece explores advanced data manipulation methods in Apache Spark, focusing on tactics

to improve performance and scalability. Key themes include the use of DataFrames and Datasets, the significance of deferred

assessment and optimization, the role of advanced manipulation functions, and the advantages of Catalyst Optimizer in query

improvement. The piece also examines best practices for efficient data segmentation, making use of Spark's integrated functions

for intricate manipulations, and the importance of caching and persistence. By mastering these advanced methods, data engineers

and architects can significantly enhance the performance of their Spark applications, ensuring robust and efficient data pipelines

that can handle the demands of modern analytics workloads.

Keywords: Apache Spark, Data Transformation, DataFrames, Datasets, Lazy Evaluation, Catalyst Optimizer, Query

Optimization, Data Partitioning, Caching, Persistence, Advanced Analytics, Big Data Processing.

Introduction

Apache Spark is an open-source and distributed computing

system launched at UC Berkeley in 2009. Apache Spark

provides both batch and real-time processing capabilities. At

the same time, a wide range of near real-time processing can

be achieved through continuous or on-demand computing

models. Apache Spark adopts a job-driven computing model,

while using a DAG (Directed Acyclic Graph) for scheduling

and execution. This innovative two-layer architecture that

combines DRMS (Distributed Resource Management

System) and DAG execution engine is suitable for big data

computing because it can not only absorb the computing

resource advantages of Hadoop but also overcome the

shortcomings of MapReduce.

CoreData and Spark SQL also provide a non-DDL interface.

Users can query and analyze big data in a more convenient

manner, and the performance of tasks that are completely

unrelated to aggregation has an advantage over DDL-based

SQL. Three continuous data processing models introduced by

Structured Stream also provide the ability to handle real-time

computing scenarios through the underlying abstractions of

DataFrame.

The advantages of Apache Spark, in addition to better

performance, are mainly reflected in the simplicity,

architecture, and abundant computing models of

programming instructions. The core concept of the calculation

engine is RDD, a read-only dataset to provide robust

consistency. DataFrame builds on the concept of RDD, and on

top of that, it further encapsulates the DataFrame API and the

schema concept. DataFrame represents a distributed

collection of data organized into named columns to provide

domain optimized execution through a query optimizer. In

addition, the two analytical models: CoreData and Structured

Stream, and a set of built-in functions and UDFs (User-

Defined Functions) also provide convenient data

manipulation capabilities. Finally, Tungsten has been adopted

at a lower level to improve the efficiency of query execution.

Sharpening the PDF will also improve the efficiency of

machine learning computation. These functions ensure wide

application scenarios such as ETL, SQL querying, and MLlib

machine learning.[1][2]

Data Transformation Basics in Apache Spark

At the heart of Spark’s data transformation capabilities are

Resilient Distributed Datasets (RDDs) and DataFrames. An

https://najer.org/najer

Volume 1 Issue 2, April – June 2020

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

RDD is an immutable distributed collection of objects that can

be processed in parallel. DataFrames are similar but offer

higher-level abstractions, akin to a table in a relational

database, with optimized execution plans.

Transformations in Spark are operations on these data

structures that produce new RDDs or DataFrames without

modifying the original. These operations are lazy, meaning

they are not executed immediately but are instead recorded in

a lineage graph. The actual execution is triggered only when

an action (e.g., collect(), count()) is called.

Types of Transformations

Transformations in Spark can be categorized into two types:

narrow and wide transformations.

• Narrow Transformations: These involve operations

where each partition of the parent RDD is used by at most

one partition of the child RDD. Examples include map(),

filter(), and flatMap(). These transformations are

generally faster and more efficient because they do not

require shuffling data across the network.

• Wide Transformations: These operations require data to

be shuffled across the network, as partitions from the

parent RDD are used by multiple partitions of the child

RDD. Examples include groupByKey(), reduceByKey(),

and join(). Wide transformations are more expensive due

to the shuffling process, which can impact performance.

Map and Reduce Operations

We will discuss fundamental transformation operations that

are part of the dataset API of Spark - RDD. Two of the most

important and widely used operations are map and reduce.

The map operation applies a function to each data item in the

RDD, and reduce generates a data item from the particular

instance of the sample. Both of these operations take in

complex partitioning as one of their arguments. This

organization scheme is required for efficiently processing data

in parallel and can have a significant impact on performance.

With good partitioning, we can achieve near-linear

acceleration of our calculations. These two operations are not

only basic building blocks for more complex algorithms, but

they are also the ones that can be implemented on Hadoop and

related tools. However, Hadoop is not suitable for more

complex methods that are available in Spark.

All transformations in Spark are lazy. Events are stored in a

list of transformations applied to the initial RDD, but no

computation is performed at this point. The actual processing

takes place only when we request some output calculations.

When such a request is made, Spark evaluates the sequence of

transformations and automatically removes the data already

used in transformations that are no longer needed. This is one

of the advantages of Spark over Hadoop because intelligent

planning can be applied. Furthermore, when executors

encounter a shuffle transformation (shuffling of data between

partitions in a cluster), by default, the persisted data is saved

on disk. This behavior might be modified by cache or persist

commands. Also, data can be automatically spilled to disk if

not enough memory is available, but this can have a negative

impact.[3]

Advanced Data Transformation Techniques

Having an efficient and productive data platform that enables

engineers and data scientists to discover data quickly is

essential. Apache Spark is a distributed data processing engine

that enables an ecosystem of developers, data technicians, and

scientists to handle big data processing for real-time

scenarios. It provides APIs in several languages, namely

Scala, Java, Python, and R. We use the cluster manager to

access clusters. Spark features are so powerful that its

performance gains compared to traditional Hadoop

MapReduce jobs. We can carry out several data processing

operations using in-memory computation on distributed data,

enabling tasks to run much more quickly than traditional

MapReduce processing. As we know, it is the task of a data

scientist to clean their raw data before carrying out relevant

analytics or machine learning tasks. This includes filtering the

data, merging multiple data sources, and transforming data to

better represent the analytical problem.

Some of the advanced data transformation techniques are

aggregation, summarization, joining, transforming, and

sorting. These are some common tasks of data transformation

on a large scale, like aggregating data, summarizing data, and

joining two or more datasets. Spark provides an easy way in

which these kinds of large-scale data operations can be carried

out in-memory across a distributed cluster. With Spark, we

can easily manipulate data in a non-structured data format as

well as perform iterative computations. With some additional

https://najer.org/najer

Volume 1 Issue 2, April – June 2020

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

modules running on top of Spark, we can also perform

complex computations in large-scale machine learning

prediction models in an easy way.

Filtering and Sorting Data

One of the basic operations while working with

transformations and actions is to perform a filtering operation.

We have small datasets, but in real projects, the data in

petabytes is quite common. For this, filtering, joining, and

other data manipulation operations are projected to grow in

large numbers. Therefore, the filter transformation is a very

basic and most important operation when we are working with

a dataset that may have billions of records. As the usage of

Spark grows, the job of data handling has become more and

more comfortable, with less time to code and less time to run.

Sorting of the data is needed in real-world scenarios. Both

ascending and descending sorting are easily supported. To

understand, consider a situation when the student records are

stored, and we suppose that our query will sort the records

based on the Roll number in descending order. All records are

stored on separate machines where the Roll numbers of

students are in a very random order. To get the expected result,

the movement of the data is quite needed. Therefore, the

sorting of data needs a shuffle operation. Whether it's a

production or a research environment, the most popular

filtering and sorting Spark API applications handle are as

follows.

Join Operations

A join operation combines two different data sources based on

a condition and returns a new composite dataset. The

condition for joining the datasets is usually determined by a

join predicate. The join returns a dataset that contains one row

for each pair in the input datasets that satisfies the join

predicate. An important factor to consider if one uses a

distributed environment such as Apache Spark is to select the

appropriate type of join to avoid excessive data shuffling. The

default join operation in Spark is a shuffled hash join. This

means that each node sends data to different nodes based on

the key so that the data on each node can be joined. While this

operation can join two large datasets, if the size of one of the

datasets cannot be contained in memory, that node will spill

data to disk which will have a significant negative impact on

the performance. For this reason, Spark researchers and

developers have provided alternative versions of join

operations.

Aggregations and Grouping

The groupBy() method is the multi-pass data aggregation

algorithm that groups rows of data indexed by keys. Often,

users call groupBy() in combination with an aggregation

function. It is critical to note that this function does not

produce any result locally on the calling executor; instead, it

schedules a reduction task on the outputs. This

implementation resolves the most frequent performance

problem related to the shuffle operation in Apache Spark. The

count(), sum(), min(), max(), and avg() methods are examples

of aggregation functions. Internally, each of these Spark

transformations triggers a quest for specific tasks responsible

for the grouping operation and implemented in the

ReduceByKey process.

The ReduceByKey process is a high-performance aggregation

function that computes the classifications with the count or

with different statistics for all records. The objectives of the

aggregation/ReduceByKey Tez tasks are divided into two

dynamic categories. First, tasks take responsibility for the

transition and loading of the shuffled clusters output data

produced by the execution tasks. Second, the transition task

builds equivalence classes with equivalent reduced keys

resulting from the grouping key. The processToReduceByKey

function at the root of structured aggregation in Spark SQL is

easy to modify because it can always rely on the simplicity of

the implemented Scala code. In a standalone version of

Shuffle-SizeExplain, we need additional support for users

looking at the Spark web interface for engines other than

Tungsten.

Optimizing Data Transformation in Apache

Spark

In order to perform advanced data manipulation using user-

defined functions (UDF) in Apache Spark, you generally have

two options for how data transformation gets implemented

going on behind the scenes. The first option is to use the built-

in map, filter, and reduce functions that can be used with data

frames and SQL queries. These functions tend to be more SQL

friendly, but can cause performance issues when used to

transform larger datasets.

https://najer.org/najer

Volume 1 Issue 2, April – June 2020

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

The second option is to use a vectorized UDF. The advantages

of vectorized UDFs in Apache Spark include speed,

performance optimizations, and more built-in functions to

support. The trade-offs for this added benefit are having to

write custom UDF results in Java and depending on the types

of columns you would like to work with there can be

additional cleanup involved, such as casting between Spark

data types.

Vectorized user-defined functions are currently in an

experimental stage in Apache Spark, and can be improved

considerably in order to offer better performance results. With

the current implementation, the efficiency of vectorized UDFs

is dependent on the number of managed memory buffers,

particularly the large values used when writing on JVM

objects. Data export as well depends on the amount of

memory allocated for the sort-based shuffle mechanism.

Furthermore, zones in vectorized UDFs collect garbage by

using Spark's memory management and JVM garbage

collection outruns other tasks. As fixes may be implemented

in the future, a feature user will be given the ability to disable

the data collection process. Those who will leverage optimal

memory management can even use Zip and filter options.

However, streaming operations must be performed as stream

operations.

Partitioning and Caching

Since Spark 2.3, adaptive query execution is enabled by

default, which optimizes execution plans based on statistics

collected during the execution of a query. Nevertheless, stable

and high-quality statistics can still be very helpful in making

better decisions in adaptive query execution. The upcoming

sections describe a number of tricks aimed at helping the

Catalyst optimizer. With methods such as repartition,

repartitionByExpr, coalesce, and partitionBy, you can modify

the number of partitions of a DataFrame.

Often, over- and under-partitioning can lead to suboptimal

plans. The number of partitions of a shuffling exchange

operator used in sort or shuffle hash join is usually determined

by hash partitioning, which has a minimum number of

partitions equal to spark.sql.shuffle.partitions. Any number of

partitions less than spark.sql.shuffle.partitions results in

under-partitioning. On the other hand, over-partitioning is an

approach where we shuffle duplicate data across multiple

partitions, which might lead to an uneven distribution of data

among workers. Unlike over-partitioned algorithms that

shuffle the data, if an algorithm uses broadcast hash joins, it

can provide a runtime improvement because the shuffling and

partitioning steps take extra time.[4]

Key Optimization Areas

Data Serialization

• Kryo vs. Java Serializer: Kryo generally outperforms

the default Java serializer due to its compact binary

format. Consider using Kryo for large datasets and

complex objects.

• Custom Serializers: For highly specialized objects,

developing custom serializers can yield significant

performance gains.

https://najer.org/najer

Volume 1 Issue 2, April – June 2020

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

Data Partitioning

• Partitioning Strategy: Choose an appropriate

partitioning strategy based on your workload. Hash

partitioning is suitable for uniform data distribution,

while range partitioning is better for ordered data.

• Partition Number: Determine the optimal number of

partitions by considering cluster resources and data size.

Too few partitions can underutilize resources, while too

many can lead to excessive overhead.

• Coalesce vs. Repartition: Use coalesce to reduce the

number of partitions without shuffling, and repartition for

full redistribution.If we looked at the DAG in below

image, coalesce(1) has three stages, but repartition(1) has

four stages.

Shuffle Optimization

• Reduce Shuffle Operations: Minimize shuffle

operations by optimizing data transformations and using

appropriate data structures.

• Shuffle Partitioning: Adjust the number of shuffle

partitions based on available resources and data

characteristics.

• Spill Handling: Configure Spark to handle spills

efficiently to prevent performance degradation.

Data Formats

• Parquet and ORC: These columnar formats are highly

optimized for Spark, providing better compression and

read performance than row-based formats.

• Compression: Choose appropriate compression codecs

based on data characteristics and desired compression

ratio.

Resource Allocation

• Executor Memory: Allocate sufficient memory to

executors to accommodate data and intermediate results.

• Executor Cores: Determine the optimal number of cores

per executor based on workload characteristics.

• Dynamic Allocation: Leverage Spark's dynamic

allocation feature to adjust cluster resources based on

demand.

Tuning Spark Configurations

• Spark Properties: Fine-tune Spark properties like

spark.sql.shuffle.partitions, spark.default.parallelism,

and spark.executor.memory to optimize performance.

• Experimentation: Test different configurations to find

the optimal settings for your specific workload.

Advanced Techniques

https://najer.org/najer

Volume 1 Issue 2, April – June 2020

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

• Catalyst Optimizer: Understand the Catalyst optimizer's

rules and heuristics to improve query performance.

• Custom Transformations: Write custom

transformations using the Dataset API for fine-grained

control.

• Code Generation: Explore code generation techniques

to optimize performance-critical code sections.

• Profiling and Monitoring: Use Spark's built-in profiling

tools and third-party monitoring solutions to identify

performance bottlenecks.[5]

Conclusion and Future Directions

Optimizing data transformations in Apache Spark is crucial

for harnessing its full potential in big data processing.

Understanding Spark's architecture, including its core

components like Resilient Distributed Datasets (RDDs),

DataFrames, and the Directed Acyclic Graph (DAG), is

foundational. These components enable efficient distributed

computing, but without proper optimization, the benefits can

be diminished. Optimizing data transformation in Apache

Spark is an iterative process that requires a deep

understanding of both the data and the Spark engine. By

carefully considering the factors discussed in this article and

conducting thorough experimentation, you can significantly

improve the performance of your Spark applications.

Remember that there is no one-size-fits-all solution, and the

optimal configuration depends on the specific characteristics

of your data and workload. Iterative process that requires a

deep understanding of both the data and the Spark engine. The

key principles of optimization—minimizing shuffling,

reducing memory usage, and leveraging lazy evaluation—

form the backbone of effective Spark applications. Practical

techniques such as choosing the right data structures,

minimizing shuffling through proper partitioning and narrow

transformations, and caching intermediate results are essential

steps. Broadcasting small datasets to avoid shuffling during

joins, using efficient SQL queries, and tuning Spark

configurations for memory and cores can significantly boost

performance. Advanced optimization techniques further

enhance Spark's efficiency. The Catalyst optimizer and

Tungsten execution engine play pivotal roles in improving

query execution. Custom optimization rules and whole-stage

code generation leverage these tools for even greater

performance gains. Adaptive Query Execution (AQE)

dynamically adjusts execution plans based on runtime

statistics, offering another layer of optimization. For

streaming applications, optimizing state store management is

crucial to maintain high throughput and low latency.

Monitoring and debugging using Spark UI, event logs,

performance metrics, and integration with tools like Ganglia

and Prometheus are vital for identifying bottlenecks and

ensuring optimizations are effective. These tools provide

insights into job execution, helping to fine-tune performance

continuously.[6]

References:

[1] [1] M. Zaharia, M. Chowdhury, M. J. Franklin, S.

Shenker, and I. Stoica, "Spark: Cluster Computing with

Working Sets," in Proc. 2nd USENIX Conf. Hot Topics

Cloud Comput. (HotCloud), 2010, pp. 10-10.

[2] [2] P. Shivhare, M. Dhote, and P. Pardhi, "A Study on

Apache Spark Framework for Big Data Processing," Int.

J. Comput. Appl., vol. 121, no. 22, pp. 26-30, 2015.

[3] [3] J. Dean and S. Ghemawat, "MapReduce: Simplified

Data Processing on Large Clusters," Commun. ACM,

vol. 51, no. 1, pp. 107-113, Jan. 2008.

[4] [4] K. Y. Al-Sakran, "Big Data: Quality, Business

Intelligence, and Optimization," Int. J. Comput. Electr.

Eng., vol. 8, no. 3, pp. 181-185, Jun. 2016.

[5] [5] V. Z. M. Garcia, D. Gómez, and E. León, "Big Data,

Data Mining, and Machine Learning," Int. J. Comput.

Sci. Inf. Technol., vol. 6, no. 5, pp. 13-22, Sep. 2014.

[6] [6] M. Nogueira, A. L. Santos, and E. Ogasawara, "Data

Lake Architecture for Big Data Analytics," J. Comput.

Sci. Appl., vol. 25, no. 2, pp. 111-120, Mar. 2017.

https://najer.org/najer

