
 North American Journal of Engineering and Research

Est. 2020

Volume 1, Issue 2, April-June 2020

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

How to Publish and Subscribe to Amazon SQS with

Salesforce Apex

Chirag Amrutlal Pethad

 Email: ChiragPethad@gmail.com

Abstract

The document outlines the integration of Amazon SQS with Salesforce to enhances event-driven architectures by overcoming

limitations of the Salesforce Event Bus. The guide outlines the benefits of asynchronous processing, scalability, and reliability,

and provides a step-by-step integration plan, including setting up SQS, configuring IAM, and developing Apex classes for

message handling. It emphasizes security considerations, testing, and best practices for maintaining a robust integration.

Keywords—Event Bus, Event Driven Architecture, AWS, Amazon SQS, Integration, Publish, Subscribe, Limits,

Scalability.

Introduction
Salesforce Event Bus, also known as the Platform Events
framework, is a powerful tool for enabling event-driven
architectures within Salesforce. However, there are several
limitations to consider when using Salesforce Event Bus.
Amazon SQS is a fully managed message queuing service that
enables you to decouple and scale micro services, distributed
systems, and server-less applications. The integration of
Amazon SQS with Salesforce enables businesses to harness the
power of real-time asynchronous data processing and avoid the
limitations associated with Salesforce Event Bus and enabling
more efficient and scalable operations. This white paper
provides a detailed guide on integrating Salesforce with
Amazon Simple Queue Service (SQS) using Salesforce Apex. It
includes an overview of both Salesforce and Amazon SQS, the
benefits of integrating these two platforms, step-by-step
instructions for setting up the integration, and best practices for
maintaining a robust and secure integration for improved
operational efficiency, seamless and efficient flow of
information.

Overview of Salesforce and Amazon SQS

Salesforce

Salesforce is a cloud-based CRM platform that provides tools

and services for managing customer relationships, sales, and

marketing efforts. It includes powerful features such as

workflow automation, analytics, and integration capabilities.

Amazon SQS

Amazon SQS is a message queuing service that allows you to

send, store, and receive messages between software

components. SQS helps in building distributed systems,

ensuring messages are delivered and processed reliably.

Limitations of Salesforce Event Bus
Salesforce Event Bus, also known as the Platform Events

framework, is a powerful tool for enabling event-driven

architectures within Salesforce and integrating with external

systems. However, there are several limitations to consider

when using Salesforce Event Bus:

Event Delivery

• No Guaranteed Order: While Salesforce attempts to deliver
events in order, it does not guarantee the order of event
delivery.

• At-Least-Once Delivery: Events may be delivered more than
once. Consumers must handle potential duplicate events.

Event Retention and Replay

• Retention Period: Platform events are retained for 72

hours. If consumers are offline for longer than this period,

they may miss events.

• Limited Replay Options: Replay of events is limited to the

last 24 hours. For events older than 24 hours but within the

https://najer.org/najer

Volume 1, Issue 2, April-June 2020

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

72-hour retention period, consumers must handle gaps

manually.

Size and Volume

• Payload Size: The maximum size of a platform event

message is 1 MB. This includes the payload and metadata.

• Volume Limits: There are limits on the number of events

that can be published and delivered within a 24-hour

period, depending on the Salesforce edition and licensing:

o There are limits on the number of events that can be

published and delivered within a 24-hour period,

depending on the Salesforce edition and licensing.

o Standard Volume Platform Events: 50,000 events per

24-hour period.

Event Publishing Limits

There are limits on the number of events that can be published

per transaction and per hour. Exceeding these limits will result

in errors:

• Per Transaction: 1,000 events

• Per Hour: Limits vary by Salesforce edition and license

count.

Event Processing Limits

• Subscriber Limits: Each event can have a maximum of 50

subscribers (including Apex triggers, flows, and external

systems).

• Concurrency Limits: Salesforce imposes limits on the

number of concurrent long-running Apex transactions,

which can impact event processing performance.

Platform Events and Triggers

• Governor Limits: Apex triggers on platform events are

subject to Salesforce governor limits, such as CPU time,

heap size, and SOQL/DML limits.

• Error Handling: Errors in triggers can cause event

processing failures. Proper error handling and retry

mechanisms must be implemented.

Integration and External Systems

• External System Dependencies: Integrating with external

systems can introduce latency and reliability issues. Ensure

that external systems can handle the volume and frequency

of events.

• API Limits: Calling external APIs from Salesforce is

subject to API call limits and rate limits imposed by the

external system.

Maintenance and Upgrades

• API Versioning: Changes to Salesforce API versions can

impact event processing. Ensure compatibility with the latt

API versions.

• Platform Upgrades: Salesforce platform upgrades may

introduce changes that impact event bus functionality.

Monitor release notes and perform testing during upgrades.

Monitoring and Debugging

• Limited Monitoring Tools: Salesforce provides limited

built-in tools for monitoring platform events. Additional

third-party tools or custom monitoring solutions may be

needed for comprehensive monitoring and alerting.

• Debugging Challenges: Debugging issues with event

processing can be challenging due to asynchronous nature

and potential delays in event delivery.

Benefits of Integrating Salesforce with Amazon

SQS

Key Benefits

• Scalability: Handle high throughput and low-latency

messages. Easily scales to handle large volumes of

messages and transactions.

• Reliability: Ensure message delivery with at-least-once

delivery and reduces the risk of data loss.

• Decoupling: Decouples components, making the system

more flexible and easier to maintain.

• Asynchronous Processing: Allows Salesforce to handle

tasks asynchronously, improving system performance and

user experience.

Overview of Salesforce Apex
Apex is a strongly-typed, object-oriented programming
language used by developers to execute flow and transaction
control statements on the Salesforce platform. It enables the
creation of web services, email services, and complex business
processes.

Key Features

• Scalability: Handle large volumes of data and transactions.

• Robustness: Build complex logic and automation

workflows.

• Integration Capabilities: Interact with external systems via

REST and SOAP APIs.

Implementation Plan
The integration strategy involves setting up a Amazon SQS,
configuring IAM accounts and policies, and implementing Apex
code in Salesforce to publish/subscribe to Amazon SQS. The
process includes:

Setting up Amazon SQS

Create a SQS queue and configure necessary IAM policies.

Salesforce Setup

Configure named credentials and remote site settings.

Apex Implementation

Develop Apex classes to handle authentication, publishing,

subscription, and message processing.

https://najer.org/najer

Volume 1, Issue 2, April-June 2020

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

Step By Step Implementation

Setting up Amazon SQS queue

• Log in to your AWS Management Console.

• Navigate to Amazon SQS.

• Click on "Create Queue".

• Choose the queue type (Standard or FIFO) and configure the
queue settings.

• Note down the queue URL.

Configure IAM

Step 1: Create an IAM User

• Navigate to IAM console.

• Click on "Users" and then "Add user".

• Provide a username and select "Programmatic access".

• Click "Next: Permissions".

Step 2: Attach Policies to IAM User

• Attach the "AmazonSQSFullAccess" policy to the user.

• Review and create the user.

• Note down the Access Key ID and Secret Access Key.

Configure Named Credentials in Salesforce

Step 1: Configure Named Credential

• In Setup, navigate to Security > Named Credentials.

• Click New Named Credential.

• Fill out the form as follows:

1. Label: AmazonSQS

2. Name: AmazonSQS

3. URL: https://sqs.<region>.amazonaws.com/

4. Identity Type: Named Principal

5. Authentication Protocol: AWS Signature Version 4

6. AWS Access Key: Access Key ID from IAM user

7. AWS Secret Key: Secret Access Key from IAM user

• Save the Named Credential.

Configure Remote Site setting in Salesforce

• In Setup, navigate to Security Controls -> Remote Site

Settings.

• Add a new remote site with the Amazon SQS URL.

Implement Apex Class for Publishing and Subscribing

messages to/from SQS

Implement Apex Trigger / Batch Job

Implement a trigger or a batch job to handle the processing

of message received from SQS.

https://najer.org/najer

Volume 1, Issue 2, April-June 2020

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

Security Considerations

• Authentication: Use OAuth 2.0 for secure authentication.

• Data Encryption: Ensure data encryption in transit and at

rest.

• Secure Storage: Ensure the JSON key file is securely store

and access is limited.

• Access Control: Implement proper IAM policies and

permissions for IAM user.

• Data Encryption: Ensure data encryption in transit and at

rest.

• Validation: Validate incoming requests to ensure they are

from trusted sources.

Testing and Validation
• Unit Testing: Write unit tests for Apex classes to ensure

functionality.

• Integration Testing: Validate end-to-end integration between
Salesforce and Amazon SQS.

• Performance Testing: Ensure the system can handle the
expected message load.

Best Practices

• Error Handling: Implement robust error handling in your

Apex code to manage failed SQS operations.

• Logging: Use Salesforce logging to monitor and

troubleshoot issues.

• Scalability: Design your solution to handle large volumes

of messages and ensure your Salesforce governor limits are

considered.

• Batch: Implement batching to pull messages in bulk.

• Security: Ensure your AWS credentials are securely stored

and managed. Use IAM roles and policies to restrict access.

• Monitoring: Monitor the integration using Salesforce

debug logs and AWS CloudWatch for SQS metrics.

Conclusion
Integrating Salesforce with Amazon SQS provides a powerful

solution for handling asynchronous processing and scaling your

operations. By following the steps outlined in this white paper,

organizations can set up a robust and secure integration,

leveraging the strengths of both Salesforce and Amazon SQS.

Organizations can enhance their Salesforce applications'

responsiveness, scalability, and reliability. This white paper

serves as a guide for developers and architects looking to

leverage the combined capabilities of Amazon SQS and

Salesforce.

References
[1] Apex Developer Guide -

https://developer.salesforce.com/docs/atlas.en-
us.apexcode.meta/apexcode/apex_dev_guide.htm

[2] Amazon SQS Documentation -
https://docs.aws.amazon.com/sqs/

[3] Amazon IAM Documentation -
https://docs.aws.amazon.com/iam/

[4] Apex Integration -
https://developer.salesforce.com/docs/atlas.en-
us.apexcode.meta/apexcode/apex_integration_intro.htm

[5] Named Credentials -
https://developer.salesforce.com/docs/atlas.en-
us.apexcode.meta/apexcode/apex_callouts_named_creden
tials.htm

https://najer.org/najer

