
North American Journal of Engineering and Research

Est. 2020

Volume 4 Issue 4, October-December

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

Optimizing Resource Allocation through Telemetry-

Based Performance Monitoring
Akshay Chandrachood

Emil: akshay.chandrachood@gmail.com

 Abstract

The dynamic nature of modern software systems, often characterized by distributed architectures, microservices, and cloud-based

deployments, presents significant challenges for resource allocation [4]. Traditional approaches to resource management, typically

static and reactive, struggle to keep pace with the fluctuating demands and complex interdependencies within these environments.

This paper delves into the utilization of telemetry-based performance monitoring as a strategic tool for optimizing resource

allocation. By providing real-time insights into system behavior, resource utilization, and application performance, telemetry data

empowers informed decision-making, leading to efficient resource management, cost reduction, improved scalability, and

enhanced system stability.

Keywords: Resource Allocation, Telemetry, Performance Monitoring, Optimization, Efficiency, Infrastructure Management,

Cloud Computing, Cost Reduction, Distributed Systems, Scalability, Predictive Analytics

Introduction
Whenever a software application is running, numerous

resources are utilized to maintain its functionality. These

resources include CPU usage, RAM utilization, network

latency, throughput, disk space usage and many more [1].

These resources can be affected by varying volumes of HTTP

requests, response times, API calls, and service interactions.

If resource allocation is not audited periodically, it can strain

the company's budget and introduce various business

complications [1]. Therefore, resource optimization is

essential for maintaining business efficiency [1].

The software development landscape has evolved

significantly in recent years. Applications today are no longer

monolithic, single-server-bound entities; instead, they are

complex ecosystems composed of distributed services,

microservices architectures, and cloud-based deployments.

This paradigm shift presents significant challenges to resource

allocation [8]. Allocating too many resources in anticipation

of peak demand results in wasted capacity and unnecessary

infrastructure costs, while failing to allocate enough resources

for actual demand leads to performance bottlenecks, service

degradation, and

poor user experience. Static configurations often lack the

flexibility to scale resources dynamically in response to

changing workloads, resulting in either resource shortages or

overspending [1][2].

In the following sections of this paper, we will explore the

problems associated with inefficient resource allocation, how

telemetry can address some common issues, the challenges of

adopting this approach, and future trends in the field.

Resource Allocation and need for optimal

allocation.

Resource allocation in software and web applications refers to

the process of assigning available resources—such as CPU,

memory, storage, and network bandwidth—to various tasks

and processes within the application to ensure optimal

performance and efficiency [7]. This involves determining the

https://najer.org/najer

2

Volume 4 Issue 4, October-December

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

best way to utilize these resources to meet the application's

performance requirements and user demand while minimizing

costs.

Resulting consequences are the reasons we need to allocate

resources optimally. The consequences of inefficient resource

allocation have far-reaching implications across various

aspects, as outlined below:

• Increased Costs: Over-provisioning servers, storage, and

network bandwidth leads to unnecessary capital expenses

and ongoing operational costs. Inefficient utilization of

cloud resources such as virtual machines and storage

services can significantly increase cloud bills. Higher

energy consumption resulting from overprovisioning and

underutilization not only escalates operating expenses but

also increases environmental impact, contributing to a

larger carbon footprint.

• Performance Degradation: Inadequate resources to

handle workload demands lead to increased response

times, negatively affecting user experience and

application performance. Resource bottlenecks and

overloaded systems cause service disruptions or

downtime, potentially resulting in financial losses and

reputational damage. Failure to dynamically allocate

resources prevents the system from adapting to changing

workloads and user requirements, thus limiting its growth

potential. Inefficient resource allocation can result in

slow response times, sluggish user interfaces, and overall

poor application performance, leading to user frustration

and decreased satisfaction.

• Scalability Issues: Applications not optimized for

resource usage may struggle to scale to accommodate

growing user demand. This limitation can prevent the

application from handling increased traffic or supporting

a growing user base, thereby restricting business growth

and market competitiveness.

• Operational Inefficiencies: Inefficient resource allocation

often leads to a lack of agility in IT operations such as

server provisioning, load balancing, data storage

management, performance monitoring, network

management, backup and recovery, security

management, change management, incident response,

and cloud management. This can hinder the ability to

quickly respond to market changes or new opportunities,

resulting in slower time-to-market for new features or

services. Additionally, it can burden IT staff with

constant firefighting rather than focusing on strategic

initiatives.

• Security Risks: Over-allocated resources can lead to a

sprawling infrastructure, increasing the risk of specific

security vulnerabilities such as unauthorized access

points, insecure configurations, outdated software, and

unpatched systems. This larger attack surface can also

result in insufficient monitoring, making it easier for

attackers to exploit unnoticed weaknesses. Furthermore,

managing a vast number of resources can lead to

misconfigurations, delayed security patching, and

overwhelmed security teams, all of which heighten the

risk of data breaches and other security incidents.

• Compliance and Regulatory Challenges: Inefficient use

of resources can make it difficult to comply with industry

standards and regulations. Over-provisioned or poorly

managed resources can lead to gaps in compliance,

resulting in potential fines or legal issues.

Therefore, it is extremely important to ensure efficient

resource allocation to maintain optimal performance, cost-

effectiveness, and scalability while mitigating risks and

ensuring compliance. Thus, it is inevitable that every software

system should manage their resources optimally.

Leveraging Telemetry for Resource Allocation
To understand how we can leverage telemetry for resource

allocation, let’s take one hypothetical yet practical real-world

scenario. An e-commerce platform experiences intermittent

performance issues, particularly during peak shopping periods

like Black Friday. Users report slow page load times,

occasional timeouts during checkout, and sporadic errors

when adding items to the cart, leading to a poor user

experience and lost sales opportunities. The platform's

development and operations teams struggle to identify the

root cause of these performance issues due to the complexity

of the system, which includes multiple microservices, third-

party integrations, and dynamic scaling infrastructure.

Instead of this firefighting, wouldn’t it be nice for

development and operations team to get alerts about their

platform way earlier? Implementing telemetry-based

performance monitoring provides a robust solution. The

development team can add client-side telemetry to the front-

end application to collect data on user interactions, page load

times, and errors, while server-side telemetry can capture

metrics such as request rates, response times, error rates, and

resource utilization. Network telemetry tools monitor network

latency, throughput, and packet loss between services and

external APIs. The telemetry information can be kept

centralized and used for the visualization and analytical

decision-making purpose.

Telemetry involves automated collection and transmission of

data from different sources within the software system into

one central repository for analysis and visualization purposes.

Real-time data provides crucial insights into what is

happening within the system such as how resources are used,

https://najer.org/najer

3

Volume 4 Issue 4, October-December

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

application’s performance hence enabling efficient decision

making based on collected metrics at set intervals.

Telemetry-based performance monitoring sets up a complete

framework that is meant to collect, analyze, and display data

from various sources in the software system. This framework

helps organizations understand how their systems behave and

use resources with an aim of making resource optimization

decisions based on data provided.

Telemetry involves the automated collection, transmission,

and analysis of data from different parts of a software system.

This real-time data provides crucial insights into system

behavior, resource utilization, and application performance,

enabling efficient decision-making.

Most of the times Telemetry and Alerting goes hand in hand.

Whenever you are collecting metrics there is a strong need to

visualize those metrics to understand behavior of the system.

Similarly, there is strong need to know glitches observed in

this behavior to make well informed decisions.

Key Components of a Telemetry System

• Data Collection Agents: Lightweight agents that gather

information about resource utilization, application

performance, and system health tools such as StatsD,

Collectd and Prometheus exporters. Data collected by

these agents includes the values emitted by various

metrics such as Infrastructure metrics, application

metrics, business metrics, custom metrics and many

more.

Figure 1: client-server principle. [12]

Collectd, which is very easy to install, works on a simple

client-server principle (Figure 1). A central server runs the

most important collectd, but you also start an instance of the

service on each host to be monitored [12]. Collectd uses many

plugins to gather data across various parts of the system.

Admins can all too easily lose track in the long lists of

extensions that are available on the web for almost any

purpose [12].

Although collectd can run in many environments, admins

usually use it on classic Linux server hardware. A commercial

server works well, and collectd is quickly ready on any Linux

distribution. Debian-based distributions have collectd as a

package, and for CentOS or RHEL, you can find precompiled

collectd packages online. Collectd is easy to install and works

on a simple client-server model. The main collectd runs on a

central server, and you start a collectd instance on each host

that needs monitoring.

Figure 2: CollectD uses the default write_http plugin to

forward metric data in JSON format over port 26000 to

OMS Agent for Linux [13].

When installing the OMS Agent for Linux by using the –

collectd switch, the agent listens on port 26000 for CollectD

metrics and then converts them to OMS schema metrics.

CollectD uses the default write_http plugin to forward metric

data in JSON format over port 26000 to OMS Agent for Linux

[13]. CollectD, an open-source Linux daemon, gathers data

from various applications and system-level metrics, offering

useful plugins for applications like the Java Virtual Machine,

MySQL Server, and Nginx. Often paired with Grafana for

visualization, CollectD's data can be forwarded to OMS,

allowing users to leverage OMS's alerting and automation

features [13]. To configure this, install the OMS Agent for

Linux using the –collectd switch. The agent will then listen on

port 26000 for CollectD metrics, converting them to OMS

schema metrics using the default write_http plugin [13].

• Data Aggregation and Storage: Central repositories

where collected data is aggregated for analysis tools such

as Influx data, Prometheus, and Jaeger.

• Data Processing and Analysis: Technologies to process

and analyze data, highlighting patterns, anomalies, and

trends (e.g., Apache Kafka, Elasticsearch, Splunk).

• Visualization and Alerting: Dashboards and alert systems

that present data visually and notify administrators of

issues (e.g., Grafana).

https://najer.org/najer

4

Volume 4 Issue 4, October-December

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

Resource optimization using telemetry involves advanced

data analysis techniques such as statistical analysis, machine

learning, and correlation analysis to identify trends, outliers,

correlations, and predict abnormalities. Once implemented,

resource optimization using telemetry will analyze collected

data to identify usage patterns, detect anomalies, and predict

future resource needs. Advanced techniques like statistical

analysis, machine learning, and correlation analysis will

pinpoint inefficiencies, allowing for proactive adjustments

and efficient resource allocation. This results in improved

performance, reduced costs, and minimized downtime.

Advantages of Telemetry-Driven Resource

Allocation

• Managing network remotely: The main advantage of

telemetry is that it allows end users to remotely monitor

the status of network elements. Once the network is

deployed, it's impractical to be physically present at the

network site to determine what functions well and what

does not. Telemetry enables the analysis, utilization, and

action on these insights from a remote location.

• Optimizing traffic: Monitoring link utilization and packet

drops at regular intervals simplifies tasks such as adding

or removing links, redirecting traffic, and adjusting

policing policies. Technologies like fast reroute enable

the network to quickly switch to new paths and reroute

traffic more efficiently than the traditional SNMP polling

mechanism. Streaming telemetry data facilitates a rapid

response time, ensuring faster traffic transport.

• Preventive troubleshooting: Network state indicators,

network statistics, and essential infrastructure details are

made accessible to the application layer, improving

operational performance and minimizing troubleshooting

time. The detailed and frequent data provided by

telemetry enhances performance monitoring, leading to

more effective troubleshooting.

• Visualizing data: Telemetry data serves as a data

reservoir that analytics toolchains and applications use to

visualize valuable insights into network deployments [5].

• Monitoring and controlling distributed devices: The

monitoring function is separated from the storage and

analysis functions, reducing device dependency and

allowing flexible data transformation through pipelines.

These pipelines consume telemetry data, transform it, and

forward the processed content to downstream consumers,

which typically include off-the-shelf solutions such as

Apache Kafka, InfluxDB, Prometheus, and Grafana [6].

Figure 3 Big data platforms in open source, such as

Grafana, Kapacitor, the Prometheus ecosystem, and the

InfluxDB stack, harness the power of Pipeline to process and

transform raw network telemetry data into actionable

insights [14].

• Cost Savings: Reduces infrastructure costs by optimizing

resource utilization. With data from telemetry, cloud

resources can be used optimally while selecting the most

economical cloud services that lead to reduced bills for

clouds.

• Improved Performance: Ensures applications run

smoothly, providing a better user experience.

• Scalability: Allows applications to scale dynamically

based on real-time demand. Dynamic allocation of

resources allows these systems to adapt to varying

workloads and user demands so that they can perform

best during peak periods without service disruptions.

• Enhanced Reliability: Proactive identification of issues

reduces downtime and improves system stability.

Proactive identification and resolution of resource

bottlenecks along with performance issues promotes

system stability by reducing downtime thereby enhancing

service continuity.

• Data-Driven Decisions: Enables informed decision-

making based on real-time data. Telemetry data offers a

basis upon which informed capacity planning decisions

should be made such that current as future requirements

are met by available resources.

Disadvantages of Telemetry-Driven Resource

Allocation
• Complexity: Implementing a comprehensive telemetry

system can be complex and time-consuming. These

telemetry systems can generate massive volumes of data,

which require efficient storage, processing, and analysis

solutions. Organizations must invest in scalable data

infrastructure and tools that are capable of handling large

data streams.

• Cost: Initial setup and ongoing maintenance of telemetry

infrastructure can be expensive.

• Data Privacy: Handling large amounts of data requires

robust security measures to protect sensitive information.

https://najer.org/najer

5

Volume 4 Issue 4, October-December

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

Telemetry information might contain sensitive details

about system behavior, user activities, and business

operations. To protect privacy and prevent unauthorized

access to data, organizations must implement strong

security measures like encryption, access controls, and

anonymization techniques for data.

• Alert Fatigue: Excessive alerts can overwhelm

administrators, leading to important alerts being missed.

Too many alerts can flood system administrators as well

as operators thereby leading to alert fatigue that may

result in missing significant issues. As such organizations

need to specify the criteria for alerting users based on

their severity or impact level.

• Integration Challenges: Integrating telemetry with

existing systems and processes can be difficult. The

fusion between telemetry data on one hand with existing

monitoring tools or management systems for

infrastructure among other enterprise applications is not

plain sailing. Middleware or API gateways might be

required by companies so as to facilitate smooth

exchange of data plus interoperability of distinct systems

altogether.

Future Trends

Some of the advancements in optimizing resource allocation

through telemetry involves:

• Serverless Computing: Telemetry for managing

ephemeral and event-driven workloads in serverless

architectures.

• Edge Computing: Collecting and analyzing telemetry

data at the edge to manage resources in distributed

environments.

• Distributed Systems and Microservices: The move

towards distributed systems and microservices will keep

growing [3]. This makes telemetry and observability

more challenging as systems become more complex.

Future trends will aim to give better insight into how

different parts of the system interact, trace requests across

microservices, and combine data from different parts to

understand the whole system.

• Cloud-Native Monitoring: With more people using cloud

technologies and containers, telemetry and observability

are changing to fit cloud environments. Future trends will

focus on integrating naturally with cloud platforms,

automatically finding services, and monitoring

containerized workloads dynamically. Methods like auto-

instrumentation and observability as code will become

more important to make monitoring in cloud-native

setups easier.

• Anomaly Detection: ML algorithms are being employed

to automatically detect anomalies in telemetry data, such

as unexpected spikes in traffic or deviations from normal

system behavior, which helps in identifying potential

issues before they impact performance [9].

• Predictive Analysis: AI techniques are used to analyze

historical telemetry data to predict future trends and

behaviors, enabling proactive optimization of resources

and preemptive actions to prevent downtime or

performance degradation [10].

• Root Cause Analysis: ML algorithms can analyze

complex relationships within telemetry data to pinpoint

the root causes of issues, reducing the time taken to

troubleshoot and resolve incidents [11].

• Pattern Recognition: AI-powered systems can recognize

patterns in telemetry data that may indicate specific

events or conditions, facilitating faster decision-making

and response by IT operations teams.

• Automation: ML and AI are integrated into observability

platforms to automate routine tasks such as data

collection, analysis, and response, allowing IT teams to

focus on more strategic initiatives and reducing manual

effort [11].

• Contextual Observability: Contextual observability aims

to give detailed context and insights into system behavior

[11]. It involves capturing not just raw telemetry data but

also the context around events, logs, and metrics. Future

trends will use techniques like distributed context

propagation, event correlation, and semantic logging to

better understand system behavior and make

troubleshooting easier.

• Observability for Serverless Computing: Serverless

computing, like AWS Lambda or Azure Functions, is

becoming popular because of its scalability and cost-

efficiency. However, it brings unique challenges for

telemetry and observability [11]. Future trends will

develop specialized monitoring and observability

solutions for serverless architectures, including detailed

monitoring of function calls, tracking cold starts, and

analyzing resource use in serverless environments.

• Observability for Data Pipelines and Streaming

Architectures: As more organizations use data pipelines

and streaming architectures for real-time data processing,

telemetry and observability will improve to monitor and

troubleshoot these systems effectively. Future trends will

focus on providing complete visibility into data flows,

monitoring latency and throughput in real time, and

enabling thorough debugging of streaming pipelines.

• Ethical Considerations: As telemetry and observability

technologies become more advanced, ethical

considerations will become more important.

Organizations will need to balance collecting necessary

https://najer.org/najer

6

Volume 4 Issue 4, October-December

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

telemetry data for monitoring and troubleshooting with

respecting privacy and compliance requirements [11].

For example, while collecting the data for the telemetry

if we log personal details of a patient then the system will

not be compliant to HIPA act and can cause serious

lawsuits [11]. Future trends will involve creating

frameworks and practices to ensure responsible telemetry

and observability, including data anonymization, consent

management, and transparency.

• Collaboration and Knowledge Sharing: Future trends in

telemetry and observability will focus on collaboration

and knowledge sharing among teams. Improved tools and

platforms will help teams see what others are seeing and

work together better, including developers, operations,

and support teams [11]. This will lead to a shared

understanding of system behavior, efficient incident

response, and collective problem-solving.

Future Trends for Telemetry and Observability — Image

by author [11].

Conclusion:
Effective resource allocation is very important for how well

software systems work, how much they cost, and how easily

they can grow. Telemetry-based monitoring of performance is

a great way to make sure resources are used well. It gives real-

time information about how systems work and what resources

they use. To do this, each organization or team must decide

which metrics are most important to watch. Using advanced

tools to analyze and show data helps them make good choices.

Key things to watch include how much the CPU is used, how

memory is used, how fast the network is, how much data goes

through, how many errors happen, and how quickly the

system responds. If these numbers are high, it can show

specific problems, like needing more power, using too much

memory, network issues, or problems with how data is

handled. Knowing and fixing these problems helps use

resources better and keeps systems working well. Following

this method can save money, make systems work better, and

make them more reliable. As technology gets better, using AI

and edge computing in telemetry will make it even easier to

manage resources well.

References:
[1] https://dhix.dhinsights.org/wp-

content/uploads/2022/08/BaxterHillrom-Targeting-

Telemetry-Whitepaper-FINAL.pdf

[2] J. Riedesel, Software telemetry: Reliable logging and

monitoring. Simon and Schuster, 2021.

[3] Afzal, N. Emerging Trends in Telemetry and

Observability | Medium. Medium. (2022, February 21).

https://medium.com/@Naveed_Afzal/emerging-trends-in-

telemetry-and-observability-shaping-the-future-of-

monitoring-complex-systems-24c8893183d4

[4] G. Y. Kusuma and U. Y. Oktiawati, “Application

performance monitoring system design using OpenTelemetry

and Grafana Stack,” Journal of Internet and Software

Engineering, vol. 3, no. 1, pp. 26–35, Nov. 2022, doi:

10.22146/jise.v3i1.5000.

[5] R. Gatev, “Observability: logs, metrics, and traces,” in

Apress eBooks, 2021, pp. 233–252. doi: 10.1007/978-1-4842-

6998-5_12.

[6]https://grafana.com/blog/2022/05/10/how-to-collect-

prometheus-metrics-with-the-opentelemetry-collector-and-

grafana/

[7] G. Zeng, Y. Zhan, H. Xie, and C. Jiang, “Resource

allocation for networked telemetry system of Mega LEO

satellite constellations,” IEEE Transactions on

Communications, vol. 70, no. 12, pp. 8215–8228, Dec. 2022,

doi: 10.1109/tcomm.2022.3214895.

[8] Abid, Adnan, Muhammad Faraz Manzoor, Muhammad

Shoaib Farooq, Uzma Farooq, and Muzammil Hussain.

"Challenges and Issues of Resource Allocation Techniques in

Cloud Computing." KSII Transactions on Internet &

Information Systems 14, no. 7 (2020).

[9] Al-amri, R., Murugesan, R. K., Man, M., Abdulateef, A.

F., Al-Sharafi, M. A., & Alkahtani, A. A. (2021). A review of

machine learning and deep learning techniques for anomaly

detection in IoT data. Applied Sciences, 11(12), 5320.

https://www.mdpi.com/2076-3417/11/12/5320

[10] Sarker, I. H. (2021). Data science and analytics: an

overview from data-driven smart computing, decision-

making and applications perspective. SN Computer Science,

2(5), 377. Retrieved from

https://link.springer.com/article/10.1007/s42979-021-00765-

8

[11] Subburaman, S. P., & Chandrasekaran, S. (2022).

Traditional Techniques and Emerging Technologies in

Future Trends for Telemetry and Observability

Distributed Systems and Microservices:

Cloud-Native Monitoring:

Machine Learning and AI

Contextual Observability

Observability for Serverless Computing

Observability for Data Pipelines and Streaming
Architectures

Ethical Considerations

Collaboration and Knowledge Sharing

https://najer.org/najer
https://dhix.dhinsights.org/wp-content/uploads/2022/08/BaxterHillrom-Targeting-Telemetry-Whitepaper-FINAL.pdf
https://dhix.dhinsights.org/wp-content/uploads/2022/08/BaxterHillrom-Targeting-Telemetry-Whitepaper-FINAL.pdf
https://dhix.dhinsights.org/wp-content/uploads/2022/08/BaxterHillrom-Targeting-Telemetry-Whitepaper-FINAL.pdf
https://medium.com/@Naveed_Afzal/emerging-trends-in-telemetry-and-observability-shaping-the-future-of-monitoring-complex-systems-24c8893183d4
https://medium.com/@Naveed_Afzal/emerging-trends-in-telemetry-and-observability-shaping-the-future-of-monitoring-complex-systems-24c8893183d4
https://medium.com/@Naveed_Afzal/emerging-trends-in-telemetry-and-observability-shaping-the-future-of-monitoring-complex-systems-24c8893183d4
https://grafana.com/blog/2022/05/10/how-to-collect-prometheus-metrics-with-the-opentelemetry-collector-and-grafana/
https://grafana.com/blog/2022/05/10/how-to-collect-prometheus-metrics-with-the-opentelemetry-collector-and-grafana/
https://grafana.com/blog/2022/05/10/how-to-collect-prometheus-metrics-with-the-opentelemetry-collector-and-grafana/
https://www.mdpi.com/2076-3417/11/12/5320
https://link.springer.com/article/10.1007/s42979-021-00765-8
https://link.springer.com/article/10.1007/s42979-021-00765-8

7

Volume 4 Issue 4, October-December

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

Observability. Journal of Artificial Intelligence & Cloud

Computing. SRC/JAICC-255. DOI: doi.

org/10.47363/JAICC/2022 (1), 238, 2-4.

https://www.researchgate.net/profile/Srividhya-

Chandrasekaran-

3/publication/380426890_Traditional_Techniques_and_Eme

rging_Technologies_in_Observability_USA/links/663bdc7d

3524304153826bfc/Traditional-Techniques-and-Emerging-

Technologies-in-Observability-USA.pdf

[12] Loschwitz, M. (n.d.). Collectd » ADMIN magazine.

ADMIN Magazine. https://www.admin-

magazine.com/Archive/2014/21/Monitoring-with-collectd-

4.3

[13] Adding your CollectD metrics to Operations

Management Suite. (2016, August 26). Stefan Johner.

https://blog.jhnr.ch/2016/08/26/adding-your-collectd-

metrics-to-operations-management-suite/

[14] Cadora, S. (2017, April 4). Introducing Pipeline: a

Model-Driven Telemetry Collection Service. Cisco Blogs.

https://blogs.cisco.com/sp/introducing-pipeline-a-model-

driven-telemetry-collection-service

https://najer.org/najer
https://www.researchgate.net/profile/Srividhya-Chandrasekaran-3/publication/380426890_Traditional_Techniques_and_Emerging_Technologies_in_Observability_USA/links/663bdc7d3524304153826bfc/Traditional-Techniques-and-Emerging-Technologies-in-Observability-USA.pdf
https://www.researchgate.net/profile/Srividhya-Chandrasekaran-3/publication/380426890_Traditional_Techniques_and_Emerging_Technologies_in_Observability_USA/links/663bdc7d3524304153826bfc/Traditional-Techniques-and-Emerging-Technologies-in-Observability-USA.pdf
https://www.researchgate.net/profile/Srividhya-Chandrasekaran-3/publication/380426890_Traditional_Techniques_and_Emerging_Technologies_in_Observability_USA/links/663bdc7d3524304153826bfc/Traditional-Techniques-and-Emerging-Technologies-in-Observability-USA.pdf
https://www.researchgate.net/profile/Srividhya-Chandrasekaran-3/publication/380426890_Traditional_Techniques_and_Emerging_Technologies_in_Observability_USA/links/663bdc7d3524304153826bfc/Traditional-Techniques-and-Emerging-Technologies-in-Observability-USA.pdf
https://www.researchgate.net/profile/Srividhya-Chandrasekaran-3/publication/380426890_Traditional_Techniques_and_Emerging_Technologies_in_Observability_USA/links/663bdc7d3524304153826bfc/Traditional-Techniques-and-Emerging-Technologies-in-Observability-USA.pdf
https://www.researchgate.net/profile/Srividhya-Chandrasekaran-3/publication/380426890_Traditional_Techniques_and_Emerging_Technologies_in_Observability_USA/links/663bdc7d3524304153826bfc/Traditional-Techniques-and-Emerging-Technologies-in-Observability-USA.pdf
https://www.admin-magazine.com/Archive/2014/21/Monitoring-with-collectd-4.3
https://www.admin-magazine.com/Archive/2014/21/Monitoring-with-collectd-4.3
https://www.admin-magazine.com/Archive/2014/21/Monitoring-with-collectd-4.3
https://blog.jhnr.ch/2016/08/26/adding-your-collectd-metrics-to-operations-management-suite/
https://blog.jhnr.ch/2016/08/26/adding-your-collectd-metrics-to-operations-management-suite/
https://blogs.cisco.com/sp/introducing-pipeline-a-model-driven-telemetry-collection-service
https://blogs.cisco.com/sp/introducing-pipeline-a-model-driven-telemetry-collection-service

