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Abstract 

As a general-purpose approach, the Reinforcement Learning (RL) concept of practice demonstrating encouraging results. 

Foundation for resolving issues with decision-making in fields including robotics, gaming, and finance. Reducing challenges to 

learning and encouraging educators, researchers, and young students to use reinforcement learning (RL) as a natural tool for 

robotics problem solving are the goals of this effort. This work offers researchers, educators, and students at different levels 

(undergraduate, bachelor, master, and doctoral) an understandable, step-by-step formulation of an RL problem as well as an 

accessible interactive simulator. The interactive tool helps users become familiar with the main ideas of reinforcement learning, as 

well as how to formulate and apply problems using it. In this work, RL is applied to a robotics 2D navigation problem where the 

robot must try to achieve a goal point while avoiding collisions with objects. For instructional purposes, a navigational problem is 

easy to understand and practical because there is just one possible outcome—that is, either the goal is accomplished or not, a 

collision occurs or not. Owing to the dearth of freely available graphical interactive simulators in the field of reinforcement learning, 

this work integrates theoretical explanation with a user-friendly practical tool to aid comprehension. The outcomes showcased are 

generated using an open-source Python script designed to lower the learning curve in this cutting-edge robotics research area. 

Keywords: Reinforcement Learning, Robotics, Gaming  

Introduction 

When the underlying workings of the environment in which they 

operate are unclear or incomplete, robotic applications including 

navigation and control can become more complex or costly. The 

ability to independently extract relevant knowledge from its 

environment is already present in a modern robotic system 

equipped with neural network-based perception algorithms [1, 2, 

3, 4]. The acquired perceived knowledge must ultimately lead to 

environmental control activities. 

Particularly, RL is becoming more and more popular as the 

obvious solution for robotics control since it gives robots the 

capacity to learn about complexity and unpredictability in the 

real environment. [6, [7], [8], [9], and [5]. Designed to Through 

experience and trial-and-error interaction with the outside world, 

model-free reinforcement learning creates a posteriori 

(empirical) knowledge. Thus, model-free approaches are favored 

over prior knowledge approaches like model-based approaches 

to convey the essence of interactive learning in order to fulfill the 

didactic purpose of this study. Furthermore, Sutton and Barto 

[10] suggest that tabular approaches are the easiest to use when 

determining the best values for minor issues with few states and 

actions, like the one this work addresses. Because of its ease of 

use and adaptability, the well-known algorithm known as Q-

learning [11] is selected to solve the suggested case study [12], 

[13]. Action-values are kept and updated in a lookup table by a 

Q-learning algorithm. 

  

In practice, learning entails modifying those action values 

repeatedly until the desired behavior is achieved. Because it is a 

tabular approach, this algorithm can only work with reasonably 

modest lookup tables. For aspiring researchers and students in 

the field of mobile robots, this paper presents the idea of 

reinforcement learning. The link between theory and application 

for beginners is not adequately explored in recent studies like 

[14], [15], and [16]. As an essential learning tool, [14] is one 

example; nonetheless, it takes a different route and does not 

adhere to the required visual exposition of the Markovian 

element in RL algorithms. Accordingly, the theory underlying 

this work is that the didactical goal is enhanced when the 

theoretical framework and the simulation findings work together. 
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Moreover, the robotics research community is free to utilize 

applications like the ones described in this study for learning and 

RL research. As previously mentioned, the examination of the Q-

learning algorithm's simplicity and its didactic implementation 

are the focus of this work. 

Current approaches, however, concentrate on broadening the use 

of tabular techniques such as approximated Q-learning and Deep 

Q-Networks (DQN) [17] and on enhancing anti-bias methods as 

suggested in DDQN [18] study. However, there are still updates 

and enhancements being made to Q-learning algorithms, with a 

primary focus on DQN. Examples of these are Quantile 

Regression Q-learning [19] and its extension, The work on 

Categorical DQN on [21] and Implicit Quantile Deep Q-learning 

[20] is done. In order to make decisions on high dimensional 

state and action spaces, RL robotics designers have recently 

focused on actor-critics-based algorithms, which have more 

complex solutions and occasionally call for two or more neural 

networks. These methods INCLUDE semi-model-based 

approaches like I2A [29], MBVE [30], and actor-critic methods 

like DDPG [22], A3C [23], TRPO [24], SAC [25], PPO [26], 

TD3 [27], and IMPALA [28]. By adding layers of intricacy, the 

state-of-the-art's sophistication makes it easier to solve complex 

problems. However, because it necessitates extensive 

mathematical understanding, it creates impediments to the 

learning of the foundational principles. Selecting traditional 

approaches such as Q-learning makes sense when the objective 

is to help novices understand reinforcement learning. 

A public repository offers an interactive simulator that can help 

with comprehension of the concepts and difficulties [31]. By 

using mathematical explanations or pseudo code alone, the tool 

makes implementation details that could be hard to understand 

visible. By using the program, one can experiment with Q-

learning and change the navigational problem's environment-

related characteristics. What this article contributes is as follows: 

Describe the construction of an RL system through an easy-

to-follow, sequential approach. 

Give instructors, researchers, and students an easy-to-use 

software application that can be used to solve robotics challenges 

using reinforcement learning. 

Encourage and hasten the robotics industry's use of RL 

techniques. 

This is the structure of the paper: Reinforcement learning theory 

is presented in part II, which is fundamental. The framework, 

findings, and case study on navigational robotics are presented 

in Section III. The constructed interactive simulator is shown in 

Section IV. Finally, a quick summary of this research's findings 

is provided in section V. 

 

History 

The pertinent history of reinforcement learning is revealed in this 

section. The basic components of the RL paradigm are initially 

presented, including the establishment of goals and rewards, the 

agent-environment interaction, and the Markov Decision 

Process, which is the issue an RL agent must resolve in order to 

learn a behavior. The Q-learning algorithm is finally introduced 

by (i) outlining its primary characteristics, such as being an Off-

Policy and Temporal-Difference method that is employed in 

control situations, and by (ii) outlining its convergence qualities. 

Environment-Agent Relationship 

Sutton and Barto [32] define reinforcement learning (RL) as the 

"process of learning a behavior through interaction to achieve a 

goal." The agent is defined as the creature that learns.  

Every time step t, the agent assesses the current state st (location, 

battery level, velocity, etc.) and selects an action at (such as 

moving forward, jumping, or remaining still) based on the last1 

taught behavior (policy) πt, which is denoted by at = πt(at |st). 

When an action is applied at, the environment reacts by sending 

a feedback scalar reward signal (rt+1 ∈ ℜ) that indicates the 

action's immediate value.2.  

Finally, the agent repeats the procedure, beginning at the 

following stage, st+1, after learning how to behave from the 

encounter.  

A discrete time sequence with t = 0, 1, 2, 3,... is used to describe 

this agent-environment interaction.  

The earlier explanation is illustrated by the image 1. 

Prizes and Objectives 

By employing incentive signals, the conventional reinforcement 

learning framework aims to codify the agent's objective. 

A reward is only a scalar value, rt ∈ ℜ. The agent's primary goal 

is to maximize the total reward over the long term.Three [33] 

Finding the ideal strategy π⋆} that maximizes the predicted 

cumulative reward is hence the aim of reinforcement learning 

(RL) as follows: 

Gt is the cumulative reward, which is defined as follows: π⋆.= 

arg max πE [Gt], (1)  

Gt = rt+1 + Άrt+2 + γ}2 rt+3 +... = X∞ k=0 γ k rt+k+1, (2)  

The behavior of the agent at timestep t is indicated by the 

subscript of t in the policy πt. Based on the knowledge gathered 

up until timestep t, the agent selects a course of action.  

According to convention, the reward signal is thought to be 

received in timestep t + 1.  

3A theory called the reward hypothesis. 
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where the discount factor, γ, values the uncertainty of future 

rewards and is in the interval [0, 1]. Gt is kept from adding up to 

infinity (diverging) via a mathematical technique called 

discounting. Selecting the appropriate γ value is essential to the 

learning process. The agent becomes more "myopic," focusing 

on maximizing projected immediate rewards, when the discount 

factor is small (γ → 0).  

Conversely, when selecting big discount factors (γ → 1), the 

agent becomes more forward-thinking and prioritizes benefits in 

the future. Usually, this γ value is adjusted through trial and error 

to match the behavior of the intended agent. 

The process of creating an appropriate reward function is a 

crucial factor in determining if an RL application is successful. 

[34]. because shoddy design could lead to undesirable or 

constrained behavior by diverting the agent's learning process.  

Theoretically, an agent's reward function is how the RL designer 

tells it what to do, as opposed to how to accomplish a certain 

objective [33]. If a goal can be established by domain knowledge 

and intuition, the reward function is typically created by the user 

by hand [35].  

Gradually increasing task complexity necessitates more indirect 

approaches, such as learning reward functions rather than 

designing them by hand [36], [37], [38]. 

Resolving the Markov Question 

A Markov Decision Process (MDP) is the foundation for the 

theoretical framework known as reinforcement learning (RL). A 

decision-making problem is modeled mathematically using an 

MDP. A regulated discrete stochastic chain of state transitions 

makes up a decision-making issue. It is governed by the fact that 

the agent choose an action an in an action space A to transit to a 

new state s in a state space S. It is stochastic in the sense that 

state action transitions have a certain probability, p(s′|s, a). It is 

discrete because every transition is a distinct event that takes 

place at a certain timestep (t). RL is a legitimate method for 

solving a problem if it can be expressed as an MDP. In specifics, 

a tuple defines an MDP. S, A, R, p, γ  

, in where S stands for the set of states, A for the set of acts, and 

R for the set of benefits. If S, A, and R are finite, then the 

following discrete probability distributions, p: S × R × S × A → 

[0, 1], accurately represent the likelihood, at each timestep t, of 

transiting to a later state (st+1 ∈ S) and earning a reward (rt+1 ∈ 

R) following action at given current state st: 

p(s ′ ,r|s, a) .= Pr{st+1 = s ′ ,rt+1 = r|st = s, at = a}. 

Significantly more, the likelihood of transitioning to a new state 

s ′ given s and an is determined by the expected state-transition 

probability function, which is defined as follows: 

 

p(s ′ |s, a) .= Pr{st+1 = s ′ |st = s, at = a} = X r∈R p(s ′ , 

= X r∈R p(s ′ ,r|s, a). 

The Markov condition must hold in order for the dynamics 

shown in (3) to hold. In particular, just the prior state, st, and 

action at—rather than other past states and actions—are used to 

completely characterize the probability of transiting from st to 

st+1. In other words, Pr{st+1|st}.= Pr{st+1|s0,...,st} is the 

knowledge that the state must contain regarding everything that 

occurred in previous interactions that potentially have an impact 

on the future. 

Action 

The complete definition of behavior π is provided by a 

probability distribution4 over actions given states, that is 

 

An action is selected based on its likelihood given the state, 

presuming that a state contains all the information the agent 

needs to know about its current circumstances. From a 

conceptual standpoint, the effective probability transition 

between states is a function of both the environment, which is 

outside the agent's control, and its decisions. Put differently, the 

likelihood of moving from sto s′ is determined by multiplying 

the policy function for every action that is feasible by the chance 

of the environment's transition dynamics probability function, 

p(s′|s, a) (described in 4). 

The Quality of The Action 

As with all RL techniques, the agent must be aware of how 

effectively the policy is working at any given time in order to 

make improvements. at the specified time. Each RL approach is 

unique in the way that the policy varies based on experience. It 

is obvious that the predicted future benefit that a policy can 

receive determines how beneficial it is. 

A value function describes the value of a policy.  

In specific terms, the state-value function of a policy vπ can be 

expressed as the predicted (discounted) cumulative reward that 

an agent could receive if they were to follow the policy π for all 

time after reaching states. 

https://najer.org/najer
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A unique variety of value function in addition to the state-value 

function is the action-value function (qπ), which is defined as the 

predicted future reward following policy π for all time after an 

action is taken in a particular state. 

 

An Ideal Practical Action 

An agent's ultimate goal is to act in an optimal manner. To reach 

optimality, one must identify the best policies, π⋆, and the 

corresponding value functions, v⋆ and q⋆.  

For all policies, the maximum state-value and action-value 

functions are known as the optimal state-value (v⋆) and action-

value (q⋆) functions. 

 

Methods To Resolved 

An agent aims to solve the MDP it is placed in at the end. The 

agent employs a basic equation known as the Bellman Equation 

to solve it by having complete knowledge of the MDP, which is 

knowing P an s, s ′, and Ra s. The helpful concept that the value 

of a state is divided into two halves lends credence to this 

equation: 

Rewards immediately: rt+1, 

The successor state's discounted value is represented by γvπ 

(st+1). 

The expected cumulative reward under a given policy (π) is 

represented by the Bellman Expectation Equation, while the 

expected cumulative reward by performing optimally (π⋆) is 

represented by the Bellman Optimality Equation. These two 

forms of Bellman Equations are different from one another. 

Appraising The Action 

Finding qπ and vπ through backup operations is the process of 

solving an MDP. Transferring value information from its 

successor states to a starting point in any state is known as 

"backing up." Because value functions have recursive 

relationships, a backup method that uses the dynamics of the 

environment p(s ′ | s, a) is used to find the current values.  

 

 

π(s|a), as well as the discounted value of the successor state (γvπ 

(s ′) or γqπ (s ′, a ′)).  

The following is the breakdown of vπ using the definition from 

(6): 
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Actions Ideal 

When acting greedily with respect to the optimal action-value 

function q⋆, optimal performance is determined by selecting the 

best course of action at every given moment. Taking action 

involves maximizing over the q⋆. 

 

 

that results in a higher predicted return for us. Therefore, the 

following optimum policy π⋆ defines optimal behavior: 

 

 

This means that, according to (9), the best action-value is 

identical to the optimal state-value, v⋆, as shown in Figure 4a: 

 

 

Furthermore, according to (10), the ideal action-value (shown in 

Figure 4b) q⋆ is 

 

 

 

Lastly, by combining the connections from (16) and (17), the 

Bellman Optimality Equations are produced. The definition of 

the Bellman Optimization Equation for v⋆ (as shown in Figure 

5a) is as follows: 

 

Furthermore, the Bellman Optimality Equation for q⋆ (as shown 

in Figure 5b) has the following definition: 

 

 

Q-Science 

The creation of the popular Model-Free Off-Policy Temporal-

Difference Control algorithm, known as Q-learning, was a 

significant advancement in the early days of reinforcement 

learning [11], [39].  

 

 

 

Managing With RL: A Textbook Case Study 

In this part, a case study of a 2D navigational robotics issue is 

presented. It is easy and practical to use a navigational task for 

waypoint-goal achieving with or without obstacle avoidance [31] 

for instructional purposes since it has comprehensible outputs. 

It involves figuring out how to get from one place in a grid-like 

environment to another while dodging any obstacles that may be 

there. The problem is separated into two tasks, each with a 

different environment configuration, from an incremental 

perspective: a collision-free job that needs goal reaching in an 

environment devoid of obstacles, and a collision-avoidance task 

that needs goal reaching in an environment scattered with 

obstacles. Q-learning is utilized to answer this case study, and 

the following discrete phases address the appropriate step-by-

step problem formulation: 

State design: specify the state that can encode the awareness 

needed by the agent to observe its surroundings and recognize its 

objective; 

Selecting the appropriate actions to enable exploration and 

collision avoidance is known as action design. 

Determining a function that more accurately captures the goals 

of the task in light of the agent's circumstances at each timestep 

is reward design. 

Ultimately, the agent needs to pick up a policy that guides the 

robot toward a waypoint-goal while dodging obstacles along the 
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way. The robot's linear velocity will always be positive, constant, 

and non-zero. Discrete steering actions, or angular velocities, are 

the possible control actions. Because they don't show any 

dynamism during training, the goal and the obstacles are static. 

Furthermore, keep in mind that discrete techniques like Q-

learning are susceptible to the dimensionality curse, which can 

lead to high computing costs if left unchecked [10]. 

 

 

 

To create tiny lookup tables, state and action spaces must 

therefore be comparatively small. As a result, a thorough design 

of small state and action spaces is carried out to guarantee the 

viability of this case study against this specific caveat. 

Activity Designing 

With a constant, positive, and uncontrollable linear velocity, the 

agent advances automatically one cell in the direction of its 

orientation aθ for each timestep. You can only control its angular 

velocity. As a result, the set of steering actions around the agent's 

rotational axis, represented by the formula A = {−90◦, −45◦, 0◦, 

45◦, 90◦}, is called the action space. 

 

 

 

 

 

 

Conclusion 

With a focus on robotics specifically, this effort aims to 

encourage and support the use of reinforcement learning (RL) as 

a logical next step in the development of autonomous systems. 

In particular, it presents a clear and practical robotics case study 

where the principles are given with care, and it teaches the main 

theoretical concepts underpinning reinforcement learning. 

The case study's ease of use makes it possible to achieve the 

targeted educational goal without drawing attention away from 

the main goal of the project, which is to help newcomers 

understand real language. An interactive simulator is also 

available, enabling the user to observe how reasonable and 

highly reliant RL-based results are on small adjustments to their 

basic settings. 

Ultimately, this work differs from other scientific works and 

open source repositories due to its theoretical foundation, clear, 

step-by-step formulations, and interactive software tool 

availability. 

more case study applications, cross-platform (web, mobile) 

compatibility, visual exposition of training metrics, support for 

more Q-learning variations or other RL algorithms, and other 

expansions of the simulator would be beneficial for future 

development. 

With a focus on robotics specifically, this effort aims to 

encourage and support the use of reinforcement learning (RL) as 

a logical next step in the development of autonomous systems. 

In particular, it presents a clear and practical robotics case study 

where the principles are given with care, and it teaches the main 

theoretical concepts underpinning reinforcement learning. 

The case study's ease of use makes it possible to achieve the 

targeted educational goal without drawing attention away from 

the main goal of the project, which is to help newcomers 

understand real language. An interactive simulator is also 
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basic settings. 

Ultimately, this work differs from other scientific works and 

open source repositories due to its theoretical foundation, clear, 

step-by-step formulations, and interactive software tool 

availability. 

more case study applications, cross-platform (web, mobile) 

compatibility, visual exposition of training metrics, support for 

more Q-learning variations or other RL algorithms, and other 

expansions of the simulator would be beneficial for future 
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