
North American Journal of Engineering and Research

Est. 2020

Volume 4 Issue 1, January – March 2023

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

Reinforcement Learning: Concepts and Practical

Implementations
Kailash Alle

Email: kailashalle@gmail.com

Abstract

As a general-purpose approach, the Reinforcement Learning (RL) concept of practice demonstrating encouraging results.

Foundation for resolving issues with decision-making in fields including robotics, gaming, and finance. Reducing challenges to

learning and encouraging educators, researchers, and young students to use reinforcement learning (RL) as a natural tool for

robotics problem solving are the goals of this effort. This work offers researchers, educators, and students at different levels

(undergraduate, bachelor, master, and doctoral) an understandable, step-by-step formulation of an RL problem as well as an

accessible interactive simulator. The interactive tool helps users become familiar with the main ideas of reinforcement learning, as

well as how to formulate and apply problems using it. In this work, RL is applied to a robotics 2D navigation problem where the

robot must try to achieve a goal point while avoiding collisions with objects. For instructional purposes, a navigational problem is

easy to understand and practical because there is just one possible outcome—that is, either the goal is accomplished or not, a

collision occurs or not. Owing to the dearth of freely available graphical interactive simulators in the field of reinforcement learning,

this work integrates theoretical explanation with a user-friendly practical tool to aid comprehension. The outcomes showcased are

generated using an open-source Python script designed to lower the learning curve in this cutting-edge robotics research area.

Keywords: Reinforcement Learning, Robotics, Gaming

Introduction

When the underlying workings of the environment in which they

operate are unclear or incomplete, robotic applications including

navigation and control can become more complex or costly. The

ability to independently extract relevant knowledge from its

environment is already present in a modern robotic system

equipped with neural network-based perception algorithms [1, 2,

3, 4]. The acquired perceived knowledge must ultimately lead to

environmental control activities.

Particularly, RL is becoming more and more popular as the

obvious solution for robotics control since it gives robots the

capacity to learn about complexity and unpredictability in the

real environment. [6, [7], [8], [9], and [5]. Designed to Through

experience and trial-and-error interaction with the outside world,

model-free reinforcement learning creates a posteriori

(empirical) knowledge. Thus, model-free approaches are favored

over prior knowledge approaches like model-based approaches

to convey the essence of interactive learning in order to fulfill the

didactic purpose of this study. Furthermore, Sutton and Barto

[10] suggest that tabular approaches are the easiest to use when

determining the best values for minor issues with few states and

actions, like the one this work addresses. Because of its ease of

use and adaptability, the well-known algorithm known as Q-

learning [11] is selected to solve the suggested case study [12],

[13]. Action-values are kept and updated in a lookup table by a

Q-learning algorithm.

In practice, learning entails modifying those action values

repeatedly until the desired behavior is achieved. Because it is a

tabular approach, this algorithm can only work with reasonably

modest lookup tables. For aspiring researchers and students in

the field of mobile robots, this paper presents the idea of

reinforcement learning. The link between theory and application

for beginners is not adequately explored in recent studies like

[14], [15], and [16]. As an essential learning tool, [14] is one

example; nonetheless, it takes a different route and does not

adhere to the required visual exposition of the Markovian

element in RL algorithms. Accordingly, the theory underlying

this work is that the didactical goal is enhanced when the

theoretical framework and the simulation findings work together.

https://najer.org/najer

Volume 4 Issue 1, January – March 2023

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

Moreover, the robotics research community is free to utilize

applications like the ones described in this study for learning and

RL research. As previously mentioned, the examination of the Q-

learning algorithm's simplicity and its didactic implementation

are the focus of this work.

Current approaches, however, concentrate on broadening the use

of tabular techniques such as approximated Q-learning and Deep

Q-Networks (DQN) [17] and on enhancing anti-bias methods as

suggested in DDQN [18] study. However, there are still updates

and enhancements being made to Q-learning algorithms, with a

primary focus on DQN. Examples of these are Quantile

Regression Q-learning [19] and its extension, The work on

Categorical DQN on [21] and Implicit Quantile Deep Q-learning

[20] is done. In order to make decisions on high dimensional

state and action spaces, RL robotics designers have recently

focused on actor-critics-based algorithms, which have more

complex solutions and occasionally call for two or more neural

networks. These methods INCLUDE semi-model-based

approaches like I2A [29], MBVE [30], and actor-critic methods

like DDPG [22], A3C [23], TRPO [24], SAC [25], PPO [26],

TD3 [27], and IMPALA [28]. By adding layers of intricacy, the

state-of-the-art's sophistication makes it easier to solve complex

problems. However, because it necessitates extensive

mathematical understanding, it creates impediments to the

learning of the foundational principles. Selecting traditional

approaches such as Q-learning makes sense when the objective

is to help novices understand reinforcement learning.

A public repository offers an interactive simulator that can help

with comprehension of the concepts and difficulties [31]. By

using mathematical explanations or pseudo code alone, the tool

makes implementation details that could be hard to understand

visible. By using the program, one can experiment with Q-

learning and change the navigational problem's environment-

related characteristics. What this article contributes is as follows:

Describe the construction of an RL system through an easy-

to-follow, sequential approach.

Give instructors, researchers, and students an easy-to-use

software application that can be used to solve robotics challenges

using reinforcement learning.

Encourage and hasten the robotics industry's use of RL

techniques.

This is the structure of the paper: Reinforcement learning theory

is presented in part II, which is fundamental. The framework,

findings, and case study on navigational robotics are presented

in Section III. The constructed interactive simulator is shown in

Section IV. Finally, a quick summary of this research's findings

is provided in section V.

History

The pertinent history of reinforcement learning is revealed in this

section. The basic components of the RL paradigm are initially

presented, including the establishment of goals and rewards, the

agent-environment interaction, and the Markov Decision

Process, which is the issue an RL agent must resolve in order to

learn a behavior. The Q-learning algorithm is finally introduced

by (i) outlining its primary characteristics, such as being an Off-

Policy and Temporal-Difference method that is employed in

control situations, and by (ii) outlining its convergence qualities.

Environment-Agent Relationship

Sutton and Barto [32] define reinforcement learning (RL) as the

"process of learning a behavior through interaction to achieve a

goal." The agent is defined as the creature that learns.

Every time step t, the agent assesses the current state st (location,

battery level, velocity, etc.) and selects an action at (such as

moving forward, jumping, or remaining still) based on the last1

taught behavior (policy) πt, which is denoted by at = πt(at |st).

When an action is applied at, the environment reacts by sending

a feedback scalar reward signal (rt+1 ∈ ℜ) that indicates the

action's immediate value.2.

Finally, the agent repeats the procedure, beginning at the

following stage, st+1, after learning how to behave from the

encounter.

A discrete time sequence with t = 0, 1, 2, 3,... is used to describe

this agent-environment interaction.

The earlier explanation is illustrated by the image 1.

Prizes and Objectives

By employing incentive signals, the conventional reinforcement

learning framework aims to codify the agent's objective.

A reward is only a scalar value, rt ∈ ℜ. The agent's primary goal

is to maximize the total reward over the long term.Three [33]

Finding the ideal strategy π⋆} that maximizes the predicted

cumulative reward is hence the aim of reinforcement learning

(RL) as follows:

Gt is the cumulative reward, which is defined as follows: π⋆.=

arg max πE [Gt], (1)

Gt = rt+1 + Άrt+2 + γ}2 rt+3 +... = X∞ k=0 γ k rt+k+1, (2)

The behavior of the agent at timestep t is indicated by the

subscript of t in the policy πt. Based on the knowledge gathered

up until timestep t, the agent selects a course of action.

According to convention, the reward signal is thought to be

received in timestep t + 1.

3A theory called the reward hypothesis.

https://najer.org/najer

Volume 4 Issue 1, January – March 2023

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

where the discount factor, γ, values the uncertainty of future

rewards and is in the interval [0, 1]. Gt is kept from adding up to

infinity (diverging) via a mathematical technique called

discounting. Selecting the appropriate γ value is essential to the

learning process. The agent becomes more "myopic," focusing

on maximizing projected immediate rewards, when the discount

factor is small (γ → 0).

Conversely, when selecting big discount factors (γ → 1), the

agent becomes more forward-thinking and prioritizes benefits in

the future. Usually, this γ value is adjusted through trial and error

to match the behavior of the intended agent.

The process of creating an appropriate reward function is a

crucial factor in determining if an RL application is successful.

[34]. because shoddy design could lead to undesirable or

constrained behavior by diverting the agent's learning process.

Theoretically, an agent's reward function is how the RL designer

tells it what to do, as opposed to how to accomplish a certain

objective [33]. If a goal can be established by domain knowledge

and intuition, the reward function is typically created by the user

by hand [35].

Gradually increasing task complexity necessitates more indirect

approaches, such as learning reward functions rather than

designing them by hand [36], [37], [38].

Resolving the Markov Question

A Markov Decision Process (MDP) is the foundation for the

theoretical framework known as reinforcement learning (RL). A

decision-making problem is modeled mathematically using an

MDP. A regulated discrete stochastic chain of state transitions

makes up a decision-making issue. It is governed by the fact that

the agent choose an action an in an action space A to transit to a

new state s in a state space S. It is stochastic in the sense that

state action transitions have a certain probability, p(s′|s, a). It is

discrete because every transition is a distinct event that takes

place at a certain timestep (t). RL is a legitimate method for

solving a problem if it can be expressed as an MDP. In specifics,

a tuple defines an MDP. S, A, R, p, γ

, in where S stands for the set of states, A for the set of acts, and

R for the set of benefits. If S, A, and R are finite, then the

following discrete probability distributions, p: S × R × S × A →

[0, 1], accurately represent the likelihood, at each timestep t, of

transiting to a later state (st+1 ∈ S) and earning a reward (rt+1 ∈

R) following action at given current state st:

p(s ′ ,r|s, a) .= Pr{st+1 = s ′ ,rt+1 = r|st = s, at = a}.

Significantly more, the likelihood of transitioning to a new state

s ′ given s and an is determined by the expected state-transition

probability function, which is defined as follows:

p(s ′ |s, a) .= Pr{st+1 = s ′ |st = s, at = a} = X r∈R p(s ′ ,

= X r∈R p(s ′ ,r|s, a).

The Markov condition must hold in order for the dynamics

shown in (3) to hold. In particular, just the prior state, st, and

action at—rather than other past states and actions—are used to

completely characterize the probability of transiting from st to

st+1. In other words, Pr{st+1|st}.= Pr{st+1|s0,...,st} is the

knowledge that the state must contain regarding everything that

occurred in previous interactions that potentially have an impact

on the future.

Action

The complete definition of behavior π is provided by a

probability distribution4 over actions given states, that is

An action is selected based on its likelihood given the state,

presuming that a state contains all the information the agent

needs to know about its current circumstances. From a

conceptual standpoint, the effective probability transition

between states is a function of both the environment, which is

outside the agent's control, and its decisions. Put differently, the

likelihood of moving from sto s′ is determined by multiplying

the policy function for every action that is feasible by the chance

of the environment's transition dynamics probability function,

p(s′|s, a) (described in 4).

The Quality of The Action

As with all RL techniques, the agent must be aware of how

effectively the policy is working at any given time in order to

make improvements. at the specified time. Each RL approach is

unique in the way that the policy varies based on experience. It

is obvious that the predicted future benefit that a policy can

receive determines how beneficial it is.

A value function describes the value of a policy.

In specific terms, the state-value function of a policy vπ can be

expressed as the predicted (discounted) cumulative reward that

an agent could receive if they were to follow the policy π for all

time after reaching states.

https://najer.org/najer

Volume 4 Issue 1, January – March 2023

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

A unique variety of value function in addition to the state-value

function is the action-value function (qπ), which is defined as the

predicted future reward following policy π for all time after an

action is taken in a particular state.

An Ideal Practical Action

An agent's ultimate goal is to act in an optimal manner. To reach

optimality, one must identify the best policies, π⋆, and the

corresponding value functions, v⋆ and q⋆.

For all policies, the maximum state-value and action-value

functions are known as the optimal state-value (v⋆) and action-

value (q⋆) functions.

Methods To Resolved

An agent aims to solve the MDP it is placed in at the end. The

agent employs a basic equation known as the Bellman Equation

to solve it by having complete knowledge of the MDP, which is

knowing P an s, s ′, and Ra s. The helpful concept that the value

of a state is divided into two halves lends credence to this

equation:

Rewards immediately: rt+1,

The successor state's discounted value is represented by γvπ

(st+1).

The expected cumulative reward under a given policy (π) is

represented by the Bellman Expectation Equation, while the

expected cumulative reward by performing optimally (π⋆) is

represented by the Bellman Optimality Equation. These two

forms of Bellman Equations are different from one another.

Appraising The Action

Finding qπ and vπ through backup operations is the process of

solving an MDP. Transferring value information from its

successor states to a starting point in any state is known as

"backing up." Because value functions have recursive

relationships, a backup method that uses the dynamics of the

environment p(s ′ | s, a) is used to find the current values.

π(s|a), as well as the discounted value of the successor state (γvπ

(s ′) or γqπ (s ′, a ′)).

The following is the breakdown of vπ using the definition from

(6):

https://najer.org/najer

Volume 4 Issue 1, January – March 2023

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

Actions Ideal

When acting greedily with respect to the optimal action-value

function q⋆, optimal performance is determined by selecting the

best course of action at every given moment. Taking action

involves maximizing over the q⋆.

that results in a higher predicted return for us. Therefore, the

following optimum policy π⋆ defines optimal behavior:

This means that, according to (9), the best action-value is

identical to the optimal state-value, v⋆, as shown in Figure 4a:

Furthermore, according to (10), the ideal action-value (shown in

Figure 4b) q⋆ is

Lastly, by combining the connections from (16) and (17), the

Bellman Optimality Equations are produced. The definition of

the Bellman Optimization Equation for v⋆ (as shown in Figure

5a) is as follows:

Furthermore, the Bellman Optimality Equation for q⋆ (as shown

in Figure 5b) has the following definition:

Q-Science

The creation of the popular Model-Free Off-Policy Temporal-

Difference Control algorithm, known as Q-learning, was a

significant advancement in the early days of reinforcement

learning [11], [39].

Managing With RL: A Textbook Case Study

In this part, a case study of a 2D navigational robotics issue is

presented. It is easy and practical to use a navigational task for

waypoint-goal achieving with or without obstacle avoidance [31]

for instructional purposes since it has comprehensible outputs.

It involves figuring out how to get from one place in a grid-like

environment to another while dodging any obstacles that may be

there. The problem is separated into two tasks, each with a

different environment configuration, from an incremental

perspective: a collision-free job that needs goal reaching in an

environment devoid of obstacles, and a collision-avoidance task

that needs goal reaching in an environment scattered with

obstacles. Q-learning is utilized to answer this case study, and

the following discrete phases address the appropriate step-by-

step problem formulation:

State design: specify the state that can encode the awareness

needed by the agent to observe its surroundings and recognize its

objective;

Selecting the appropriate actions to enable exploration and

collision avoidance is known as action design.

Determining a function that more accurately captures the goals

of the task in light of the agent's circumstances at each timestep

is reward design.

Ultimately, the agent needs to pick up a policy that guides the

robot toward a waypoint-goal while dodging obstacles along the

https://najer.org/najer

Volume 4 Issue 1, January – March 2023

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

way. The robot's linear velocity will always be positive, constant,

and non-zero. Discrete steering actions, or angular velocities, are

the possible control actions. Because they don't show any

dynamism during training, the goal and the obstacles are static.

Furthermore, keep in mind that discrete techniques like Q-

learning are susceptible to the dimensionality curse, which can

lead to high computing costs if left unchecked [10].

To create tiny lookup tables, state and action spaces must

therefore be comparatively small. As a result, a thorough design

of small state and action spaces is carried out to guarantee the

viability of this case study against this specific caveat.

Activity Designing

With a constant, positive, and uncontrollable linear velocity, the

agent advances automatically one cell in the direction of its

orientation aθ for each timestep. You can only control its angular

velocity. As a result, the set of steering actions around the agent's

rotational axis, represented by the formula A = {−90◦, −45◦, 0◦,

45◦, 90◦}, is called the action space.

Conclusion

With a focus on robotics specifically, this effort aims to

encourage and support the use of reinforcement learning (RL) as

a logical next step in the development of autonomous systems.

In particular, it presents a clear and practical robotics case study

where the principles are given with care, and it teaches the main

theoretical concepts underpinning reinforcement learning.

The case study's ease of use makes it possible to achieve the

targeted educational goal without drawing attention away from

the main goal of the project, which is to help newcomers

understand real language. An interactive simulator is also

available, enabling the user to observe how reasonable and

highly reliant RL-based results are on small adjustments to their

basic settings.

Ultimately, this work differs from other scientific works and

open source repositories due to its theoretical foundation, clear,

step-by-step formulations, and interactive software tool

availability.

more case study applications, cross-platform (web, mobile)

compatibility, visual exposition of training metrics, support for

more Q-learning variations or other RL algorithms, and other

expansions of the simulator would be beneficial for future

development.

With a focus on robotics specifically, this effort aims to

encourage and support the use of reinforcement learning (RL) as

a logical next step in the development of autonomous systems.

In particular, it presents a clear and practical robotics case study

where the principles are given with care, and it teaches the main

theoretical concepts underpinning reinforcement learning.

The case study's ease of use makes it possible to achieve the

targeted educational goal without drawing attention away from

the main goal of the project, which is to help newcomers

understand real language. An interactive simulator is also

available, enabling the user to observe how reasonable and

https://najer.org/najer

Volume 4 Issue 1, January – March 2023

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

highly reliant RL-based results are on small adjustments to their

basic settings.

Ultimately, this work differs from other scientific works and

open source repositories due to its theoretical foundation, clear,

step-by-step formulations, and interactive software tool

availability.

more case study applications, cross-platform (web, mobile)

compatibility, visual exposition of training metrics, support for

more Q-learning variations or other RL algorithms, and other

expansions of the simulator would be beneficial for future

development.

References:

[1] M. I. Pereira, P. N. Leite, and A. M. Pinto, ‘‘Detecting

docking-based structures for persistent ASVs using a volumetric

neural network,’’ in Proc. Global Oceans, 2020, pp. 1–6.

 [2] P. N. Leite and A. M. Pinto, ‘‘Exploiting motion perception

in depth estimation through a lightweight convolutional neural

network,’’ IEEE Access, vol. 9, pp. 76056–76068, 2021.

[3] M. I. Pereira, R. M. Claro, P. N. Leite, and A. M. Pinto,

‘‘Advancing autonomous surface vehicles: A 3D perception

system for the recognition and assessment of docking-based

structures,’’ IEEE Access, vol. 9, pp. 53030–53045, 2021.

[4] T. Haarnoja, S. Ha, A. Zhou, J. Tan, G. Tucker, and S. Levine,

‘‘Learning to walk via deep reinforcement learning,’’ 2018,

arXiv:1812.11103.

[5] M. Everett, Y. F. Chen, and J. P. How, ‘‘Collision avoidance

in pedestrianrich environments with deep reinforcement

learning,’’ IEEE Access, vol. 9, pp. 10357–10377, 2021.

[6] X. Zhou, P. Wu, H. Zhang, W. Guo, and Y. Liu, ‘‘Learn to

navigate: Cooperative path planning for unmanned surface

vehicles using deep reinforcement learning,’’ IEEE Access, vol.

7, pp. 165262–165278, 2019

[7] X. Cao, C. Sun, and M. Yan, ‘‘Target search control of AUV

in underwater environment with deep reinforcement learning,’’

IEEE Access, vol. 7, pp. 96549–96559, 2019.

[8] X. Wang, M. C. Gursoy, T. Erpek, and Y. E. Sagduyu,

‘‘Learningbased UAV path planning for data collection with

integrated collision avoidance,’’ IEEE Internet Things J., vol. 9,

no. 17, pp. 16663–16676, Sep. 2022.

[9] J. Ibarz, J. Tan, C. Finn, M. Kalakrishnan, P. Pastor, and S.

Levine, ‘‘How to train your robot with deep reinforcement

learning: Lessons we have learned,’’ Int. J. Robot. Res., vol. 40,

nos. 4–5, pp. 698–721, Apr. 2021.

[10] R. S. Sutton and A. G. Barto, Reinforcement Learning: An

Introduction. Cambridge, MA, USA: MIT Press, 2018.

https://najer.org/najer

