
North American Journal of Engineering and Research

Est. 2020

Volume 3 Issue 1, January – March 2022
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

Eliminate the Noisy Neighbor Problem in

Docker using Resource Limits
Pallavi Priya Patharlagadda

Email: Pallavipriya527.p@gmail.com

Abstract

Container technologies are highly popular these days. It is evident that a wide range of applications are operating in containers.
Its increased computing usage due to resource sharing and/or isolation is one of the main causes for its widespread adoption.
Sharing resources is important, but a careless setup can result in a noisy neighbor scenario. A noisy neighbor scenario in
computing is when a process or collection of processes uses up too many resources on a host. This condition has an adverse
effect on other processes that are operating on the same host. In the end, the host's low resources cause it to become less
responsive, which lowers the performance of the entire system. This paper will go over how to reduce the noisy neighbor issue
in Docker by setting memory and CPU restrictions.

Introduction

It's now really simple to deploy new containers. Scaling
becomes considerably simpler once containers are up and
running. A single keystroke can double or even triple the
number of containers that are running, but can your container
infrastructure support it?

similar to vehicles traveling on a freeway. Each car is unique
in terms of its size, performance, and shape. The amount of
space on the road for cars is restricted. In response to demand,
freeways cannot yet expand or contract in size. A bottleneck
will eventually form when there are more cars on a freeway.
For this reason, laws like those prohibiting halting and setting
speed limits are in place to aid in traffic flow. The container
infrastructure is generally not as dynamic as the containers
themselves. It is possible to easily stretch the container
infrastructure's computational capacity. The industry is
averaging 10 containers per host, with some installations
having up to 95 containers on a host, according to the Sysdig
annual container survey. Whoa! It's normal to have some
troublemakers in the mix, even if the total number of
containers stays the same. For instance, some programs
gradually increase their memory and CPU usage. This is
usually acceptable, but what would happen if every container
in your entire infrastructure began consuming more
resources? In the subsequent sections, let’s look at how to
solve the problem of heavy resource consumption.

All about Docker:

Docker is an open platform for application development,
delivery, and execution. Docker allows you to rapidly release
software by separating your apps from your infrastructure.

You can use Docker to manage your infrastructure in the same
manner that you do your apps. You may cut down on the
amount of time it takes between writing code and putting it
into production by utilizing Docker's shipping, testing, and
deployment processes.

With Docker, you can bundle and execute an application in a
container—a loosely isolated environment. You can execute
multiple containers concurrently on a single host thanks to the
isolation and security. You can use containers instead of
depending on what is installed on the host because they are
lightweight and come with everything required to run the
application. While working, you can share containers and
ensure that each person you share with gets the identical
container that functions uniformly.

Docker gives you the tools and a platform to control your
containers' lifecycle:

● Use containers to develop your application and its
supporting components.

● The container serves as the distribution and testing hub for
your program.

● When you're prepared, launch your application as an
orchestrated service or in a container in your production
environment. Regardless of whether your production
environment is a cloud provider, a local data center, or a
combination of the two, this operates in the same way.

Docker uses:

Delivering your applications in a timely and reliable manner:

By enabling developers to operate in standardized settings
with local containers that host their applications and services,

https://najer.org/najer

Volume 1 Issue 1, January – March 2022
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

Docker simplifies the development lifecycle. Workflows
involving continuous integration and continuous delivery
(CI/CD) benefit greatly from containers.

Look at the following example situation:

• Using Docker containers, your engineers collaborate with

one another while writing code locally.

• They execute both automatic and manual tests on their

applications by pushing them into a test environment

using Docker.

• In order to verify and validate their fixes, developers can

redeploy their fixed code to the test environment after

fixing it in the development environment.

• After testing, it's just a matter of uploading the revised

image to the production environment to get the patch to

the customer.

Responsive deployment and scaling:

Highly portable workloads are possible using Docker's
container-based technology. A developer's laptop, real or
virtual machines in a data center, cloud providers, or a
combination of environments can all execute Docker
containers.

Because of its lightweight design and mobility, Docker also
makes it simple to manage workloads dynamically, quickly
scaling up or down services and applications based on
business requirements.

Running more workloads on the same hardware:

Docker is quick and light-weight. It offers a practical,
affordable substitute for virtual machines based on
hypervisors, allowing you to utilize more of your server's
capacity to meet your company's objectives. When you need
to accomplish more with fewer resources in small and medium
deployments and high density situations, Docker is ideal.

Docker architecture

The architecture of Docker is client-server based. The Docker
daemon, which builds, manages, and distributes your Docker
containers, is the one with whom the Docker client
communicates. It is possible for the Docker client and daemon
to operate simultaneously on the same machine or to link a
Docker client to a remote Docker daemon. UNIX sockets, a
network interface, or a REST API are the ways in which the
Docker client and daemon exchange information. Docker
Compose is an additional Docker client that facilitates the
manipulation of applications composed of many containers.

The Docker daemon

In addition to managing Docker objects like images,
containers, networks, and volumes, the Docker daemon, or
(dockerd), is in charge of listening for Docker API calls. To
manage Docker services, a daemon can converse with other
daemons.

The Docker client

For many Docker users, the main interface to interact with
Docker is the Docker client (docker). The client transmits
commands to dockerd, which executes them, when you use
commands like docker run. Utilizing the Docker API is the
docker command. Multiple daemons can be in communication
with the Docker client.

Docker Desktop

You can create and distribute containerized apps and
microservices with Docker Desktop, an easy-to-install
program for Linux, Windows, and Mac. Together with
Docker Compose, Docker Content Trust, Kubernetes,
Credential Helper, and the Docker daemon (dockerd),
Docker Desktop also contains the Docker client (docker).

Docker registries

Docker images are kept in a registry. Docker searches
Docker Hub by default for images, and Docker Hub is a
publicly accessible registry. Even managing your own
private registry is possible.

When you use the docker pull or docker run commands,
Docker pulls the required images from your configured
registry. When you use the docker push command,
Docker pushes your image to your configured registry.

Docker objects

Creating and utilizing images, containers, networks, volumes,
plugins, and other things is what Docker is all about. Here's a
quick rundown of a few of those items.

Images

An image is a read-only template that contains Docker
container creation instructions. Images are frequently
modified versions of one another. You may, for instance,
create an image that is based on the Ubuntu image and
includes your application and the Apache web server installed,
together with the configuration information required for your
application to function.

https://najer.org/najer

Volume 1 Issue 1, January – March 2022
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

You may make your own pictures or you might limit yourself
to using only those that other people have made and uploaded
to a register. You construct a Dockerfile with straightforward
syntax to define the procedures required to produce and run
your own image. A Dockerfile's instructions each generate a
layer in the image. Rebuilding the image after making changes
to the Dockerfile only affects the modified layers. This
contributes to the lightweight, small size, and speed of
pictures in comparison to other virtualization systems.

Containers

An image's executable instance is known as a container. The
Docker API and CLI allow you to create, stop, transfer, and
destroy containers. Not only can you attach storage to a
container, but you can also link it to one or more networks and
use its existing state to produce a new image.

A container's default level of isolation from its host computer
and other containers is rather high. The degree of isolation
between a container's network, storage, and other underlying
subsystems and the host computer or other containers is
something you can adjust.

An image and any configuration variables you give it during
creation or startup define a container. Any modifications made
to a container's state that aren't kept in persistent storage
vanish when it is deleted.

Now that we’ve learned about Docker, let’s look at how to
mitigate the noisy neighbor situation,

1. Creating Container Without Limits:

Docker does not impose any resource limitations on a
container by default. It gives the container access to every
resource on the system. Let's use an example to better grasp
this.

Start by displaying the host machine's CPU and memory
configuration:

$ docker info | grep -iE "CPUs|Memory"

CPUs: 4

Total Memory: 7.714GiB

The output shown above indicates that the

host machine has 4 CPUs and 7.714 GiB of

memory.

Now, let's create a new container and use docker

stats command to view its resource limits:

$ docker container run --rm -it -d --name

example nginx:alpine

$ docker stats example --no-stream --format

"{{ json . }}" | python3 -m json.tool

{

"BlockIO": "0B / 12.3kB",

"CPUPerc": "0.00%",

"Container": "web-server",

"ID": "2def8ff5e138",

"MemPerc": "0.05%",

"MemUsage": "3.734MiB / 7.714GiB",

"Name": "example",

"NetIO": "5.46kB / 0B",

"PIDs": "5"

}

The memory limit, 7.714 GiB, is the same as the host's

RAM, as the result above indicates. You can see that in the

MemUsage box.

To print the result in a nice format in this example, it is sent

to the Python interpreter.

2. Setting Resources Limits when Creating a Container:

We can construct a container with Docker in the following

ways:

The container run child command

The docker-compose.

You can use either of these options to impose resource

restrictions in Docker.

2.1. Using the container, run the child command.

Setting resource limitations with the container run child

command is the easiest method. We can specify memory

and CPU limits with this command.

2.1.1. Setting Memory Limits

Use the container run child command with the --memory

argument to set a hard memory restriction. Following the

setting of this limit, Docker prevents a container from using

more RAM, either system or user.

$ docker container run --rm -it -d --name test-mem-limit --

memory=512m nginx:alpine

Now, let’s check its memory limits:

$ docker stats test-mem-limit --no-stream --format "{{

json . }}" | python3 -m json.tool

{

 "BlockIO": "0B / 12.3kB",

 "CPUPerc": "0.00%",

 "Container": "test-mem-limit",

 "ID": "b46befb6d196",

 "MemPerc": "1.45%",

 "MemUsage": "3.711MiB / 512MiB",

 "Name": "test-mem-limit",

 "NetIO": "3.83kB / 0B",

 "PIDs": "5"

https://najer.org/najer

Volume 1 Issue 1, January – March 2022
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

}

We can observe that Docker has imposed a 512 MiB RAM

limit in the output above. That's what the MemUsage field

says. A positive integer may be entered as an input for the

–memory option, followed by the suffixes b, k, m, or g to

represent bytes, kilobytes, megabytes, or gigabytes,

respectively

Furthermore, we can create soft memory restrictions with

Docker. If the kernel doesn't detect memory contention,

This option lets a container utilize as much memory as it

needs. Use the container run child command with the –

memory-reservation argument to set soft memory limits:

$ docker container run --rm -it -d --name soft-mem-limit --

memory=2g --memory-reservation=512m nginx:alpine

The hard memory constraints in this example are set to 2GiB,

while the soft memory limits are set at 512MiB.

Note: It is important to remember that soft memory

limitations need to be lower than hard memory restrictions.

as there is no assurance that the container won't surpass it and

it is a soft limit.

Let's now confirm the container's hard memory limits:

$ docker stats soft-mem-limit --no-stream --

format "{{ json . }}" | python3 -m json.tool

{

 "BlockIO": "135kB / 12.3kB",

 "CPUPerc": "0.00%",

 "Container": "soft-mem-limit",

 "ID": "9b748ec04b2a",

 "MemPerc": "0.38%",

 "MemUsage": "3.863MiB / 2GiB",

 "Name": "soft-mem-limit",

 "NetIO": "3.98kB / 0B",

 "PIDs": "5"

}

There is no command in Docker to display the

soft memory constraints. But these specifics are

available in the cgroups.

Let's enter the container and make a list of the

contents of /sys/fs/cgroup/memory.minimal file:

$ docker exec -it soft-mem-limit sh

cat /sys/fs/cgroup/memory.low

536870912

exit

There is an integer value in this file. It has the same 512

MiB byte representation as the soft limitations.

2.1.2. Setting CPU Limits

By default, containers have unrestricted access to the host

computer's CPU cycles. Use the container run command

with the –cpus argument to restrict it.

$ docker container run --rm -it -d --name test-cpu-limit --

cpus=2 nginx:alpine

Docker ensures that a container running with this

configuration can only use two CPU at a time.

We may also establish limitations on a certain CPU with

Docker. Use the –cpuset-cpus option to do this:

$ docker container run --rm -it -d --name test-cpu-

set --cpus=1 --cpuset-cpus=2 nginx:alpine

We have placed restrictions on the third CPU in

this case.

Let's now enter the container and list the contents of the

/sys/fs/cgroup/cpuset.cpus file in order to confirm this:

$ docker exec -it test-cpu-sets sh

cat /sys/fs/cgroup/cpuset.cpus

2

exit

There is an integer value in this file. It stands for a CPU

figure. It is significant to remember that the CPU numbering

begins at 0.

2.2. Using docker-compose

We can also use docker-compose to define resource

restrictions using Docker. Let's use an example to better

grasp this.

Start by generating a configuration file called docker-

compose.yml.

$ cat docker-compose.yml

version: "3.9"

services:

 web-server:

 image: nginx:alpine

 container_name: compose-res-limits

 mem_limit: "2g"

 mem_reservation: "512m"

 cpus: "1"

 cpuset: "2"

In this setup:

The term "mem_limit" refers to the hard memory

restrictions. 2 GiB is the value we have set for

mem_reservation, which stands for the soft memory

restrictions. The maximum CPU amount, which is

https://najer.org/najer

Volume 1 Issue 1, January – March 2022
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

512MiB, is what we have set. As it reflects the maximum

on a particular CPU, we have it set to 1. It is now running

on the third CPU.

Now let's implement the setup to establish a container with

the given boundaries:

$ docker-compose up -d

Let's now examine the container's CPU and RAM

limits:

$ docker stats compose-res-limits --no-stream

--format "{{ json . }}" | python3 -m json.tool

{

 "BlockIO": "0B / 12.3kB",

 "CPUPerc": "0.00%",

 "Container": "compose-res-limits",

 "ID": "0d7055f8eb31",

 "MemPerc": "0.18%",

 "MemUsage": "1.836MiB / 2GiB",

 "Name": "compose-res-limits",

 "NetIO": "11.2kB / 0B",

 "PIDs": "2"

}

$ docker exec -it compose-res-limits sh

cat /sys/fs/cgroup/memory.low

536870912

cat /sys/fs/cgroup/cpuset.cpus

2

exit

The right setting of CPU and RAM limits via docker-

compose is evident here.

3. Setting Resources Limits on a Running Container

In the previous section, we defined resource limitations using

the commands container run and docker-compose.

Nevertheless, a significant limitation of these instructions is

their inability to provide dynamic limit updates. It implies

that when building a container, we must declare every limit.

The container run command's inability to put restrictions on

more than one container is another drawback.

Use the container update command to get around all of these

restrictions. This command modifies the various containers'

configurations dynamically. So long as the containers are

operating, we can use it.

First, establish a container with no resource restrictions in

order to comprehend this:

$ docker container run --rm -it -d --name test-no-

limits nginx:alpine

Let's now use the container update command to

set the CPU and RAM limits:

$ docker update --memory=2g --memory-

reservation=512m --cpus=1 --cpuset-cpus=2 --

memory-swap -1 test-no-limits

We've used the –memory-swap -1 option in this

case. Up to the amount of memory on the host

system, this option raises the swap memory limit.

Without this choice, the command produced the

following error:

Error response from daemon: Cannot update

container: Memory limit should be smaller than

already set memoryswap limit, update the

memory swap at the same time

Let's confirm that the container's CPU and RAM

limitations were changed correctly:

$ docker stats test-no-limits --no-stream --

format "{{ json . }}" | python3 -m json.tool

{

 "BlockIO": "0B / 12.3kB",

 "CPUPerc": "0.00%",

 "Container": "test-no-limits",

 "ID": "ef6bd714038a",

 "MemPerc": "0.36%",

 "MemUsage": "3.691MiB / 2GiB",

 "Name": "test-no-limits",

 "NetIO": "5.29kB / 0B",

 "PIDs": "5"

}

$ docker exec -it test-no-limits sh

cat /sys/fs/cgroup/memory.low

536870912

cat /sys/fs/cgroup/cpuset.cpus

2

 # exit

Conclusion

Specifying Docker container CPU limitations is equally

important as specifying memory limits. Luckily, Docker

Desktop has global restrictions that stop users from running

too many Docker Images on their PC and completely

overloading it. Nonetheless, I believe it is best practice to

explicitly define resource limitations and to treat your local

https://najer.org/najer

Volume 1 Issue 1, January – March 2022
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

development workstation the same as your Kubernetes

cluster or cloud vm.

References

[1] https://howtodoinjava.com/devops/docker-memory-
and-cpu-limits/

[2] https://docs.docker.com/guides/docker-overview/

[3] https://www.56k.cloud/en/blog/put-the-brakes-on-
docker-containers

[4] https://www.thorsten-hans.com/docker-container-
cpu-limits-explained/

[5] https://faun.pub/understanding-docker-container-
memory-limit-behavior-41add155236c

https://najer.org/najer

