
North American Journal of Engineering and Research

Est. 2020

Volume 2 Issue 3, July-September 2021

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
https://najer.org/najer

Advancing Application Development through

Containerization: Enhancing Automation,

Scalability, and Consistency

Premkumar Ganesan

Technology Leader in Digital Transformation

for Government and Public Sector ,

Baltimore, Maryland

Abstract

Containerization has fundamentally transformed the software development landscape by enhancing automation, scalability,

and consistency across diverse environments. This paper examines the core principles of containerization and its pivotal role

in modernizing application development through automation. By leveraging tools such as Docker, Kubernetes, and Amazon

Elastic Kubernetes Service (EKS), we explore the substantial benefits containerization brings to DevOps practices, including

improved deployment efficiency, resource optimization, and operational consistency. Additionally, this study addresses the

challenges associated with container orchestration and management, offering insights into best practices for implementing

containerized solutions in contemporary software engineering workflows.

Keywords—Containerization, Docker, Kubernetes, Amazon Elastic Kubernetes Service (EKS), DevOps, Software

Development Automation, Scalability, Consistency, Application Modernization, Container Orchestration, Software

Engineering, Deployment Efficiency, Resource Optimization, Operational Consistency.

INTRODUCTION

The advent of containerization technology has fundamentally

transformed how software applications are developed,

deployed, and managed. By packaging an application along

with its dependencies into a single unit, containerization

ensures consistent operation across diverse computing

environments. This approach enhances portability,

streamlines the automation of software development

processes, and significantly reduces operational overheads.

Tools like Docker and orchestration platforms such as

Kubernetes and Amazon Elastic Kubernetes Service (EKS)

have become integral to modern software engineering,

enabling seamless integration with DevOps practices and

fostering efficient, scalable, and resilient software systems.

This paper delves into the principles, benefits, and challenges

of containerization, providing insights into its pivotal role in

the automation and modernization of application

development.

CONTAINERIZATION TECHNOLOGIES

A. Docker

Docker is the most widely used containerization

technology, offering an open-source platform that

automates the deployment of applications within

lightweight containers. It encapsulates an application and

its dependencies into a standardized container image,

ensuring consistent performance across various

environments. Docker containers are lightweight, sharing

the host system's kernel, which improves resource

utilization and startup times compared to traditional

virtual machines.

This efficiency is crucial for modern development

practices, enhancing portability and reliability. Docker

supports a robust ecosystem of tools for CI/CD pipelines,

addressing the "it works on my machine" problem by

ensuring consistent environments. It integrates

seamlessly with orchestration platforms like Kubernetes,

enabling scalable management of containerized

applications. In summary, Docker simplifies the

development and deployment process, making it an

indispensable tool in modern software engineering [1][2].

https://najer.org/najer

Volume 2 Issue 3, July-September 2021

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
https://najer.org/najer

B. Kubernetes

Kubernetes, originally developed by Google, is an open-

source container orchestration platform that automates the

deployment, scaling, and management of containerized

applications. It utilizes key concepts such as pods,

services, and deployments to effectively manage the

lifecycle of containers [3][4].

i. Pods represent the smallest deployable units that

contain one or more containers, ensuring consistent

operation across different environments.

ii. Services provide stable endpoints and load

balancing for accessing pods, decoupling frontend

and backend components.

iii. Deployments manage the scaling, updating, and

self-healing of applications by maintaining the

desired state defined by users. These features

collectively enable Kubernetes to handle the

complexities of large-scale containerized

environments, ensuring high availability, efficient

resource utilization, and seamless scaling.

Integrations with platforms like Amazon Elastic

Kubernetes Service (EKS) further enhance

Kubernetes by simplifying cluster setup and

management, allowing for more focus on

application deployment and optimization.

Fig 1 Kubernetes Cluster [11]

Fig 2 Worker Node Key Components [11]

C. Amazon Elastick Kubernetes Service (EKS)

Amazon Elastic Kubernetes Service (EKS) is a managed

Kubernetes service that simplifies the process of running

Kubernetes on AWS by eliminating the need to install and

operate the Kubernetes control plane or nodes. EKS

seamlessly integrates with other AWS services, providing

a secure, scalable, and highly available environment for

containerized applications. By leveraging EKS,

organizations can benefit from AWS's robust

infrastructure, which includes advanced security features,

automated patching, and monitoring capabilities. This

integration ensures that applications deployed on EKS are

not only scalable and resilient but also adhere to best

practices in security and compliance. Additionally, EKS

supports a wide range of Kubernetes tools and plugins,

enabling developers to use familiar tools and workflows

while taking advantage of the managed service's benefits.

Overall, Amazon EKS streamlines the deployment and

management of Kubernetes clusters on AWS, allowing

teams to focus on building and deploying applications

without the overhead of managing underlying

infrastructure [5].

BENFITS OF CONTAINERIZATION

D. Portability

Containers can run on any system that supports container

runtimes, ensuring that applications perform consistently

across different environments, such as development,

testing, and production [1][6][7].

E. Scalability

Container orchestration tools like Kubernetes and EKS

enable horizontal scaling of applications by managing

container instances dynamically based on demand. This

flexibility is crucial for handling varying workloads and

ensuring optimal resource utilization [4][8].

F. Efficiency

Containers are lightweight and share the host OS kernel,

leading to faster startup times and reduced resource

consumption compared to traditional virtual machines

[1][5][9].

G. Isolation

Containers provide a secure environment by isolating

applications from each other and the host system,

minimizing the risk of conflicts and enhancing security

[9][10].

AUTOMATION IN SOFTWARE DEVELOPMENT

A. Continuous Integration and Continuous Deployment

(CI/CD)

Containerization simplifies the CI/CD pipeline by

providing a consistent environment for building, testing,

and deploying applications. Tools like Jenkins integrate

seamlessly with Docker and Kubernetes to automate these

processes, reducing the risk of human error and speeding

up delivery cycles [6][11].

B. Infrastructure as Code (IaC)

Container orchestration platforms support IaC practices by

allowing infrastructure configuration to be defined and

managed through code. This approach ensures that the

https://najer.org/najer

Volume 2 Issue 3, July-September 2021

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
https://najer.org/najer

deployment environment is consistent, version-controlled,

and easily reproducible [8][12].

C. Automated Monitoring and Management

Kubernetes, EKS, and other container orchestration tools

provide built-in capabilities for automated health monitoring,

logging, and management of containerized applications.

These tools help maintain high availability and reliability by

automatically handling issues like container restarts and load

balancing [3][10].

KEY CONCEPTS IN CONTAINERIZATION

D. Creating, Destroying, Replicationg Containers

Kubernetes automates the creation, destruction, and

replication of containers using its declarative configuration

system. Users define the desired state of their applications,

and Kubernetes ensures that this state is achieved and

maintained. For example, Kubernetes can automatically

replicate containers across multiple nodes to ensure

availability and scalability.

E. Rolling Updates of Containers

Kubernetes supports rolling updates, allowing applications

to be updated with zero downtime. This process involves

incrementally updating pods with new versions of the

container image while keeping the application available to

users. If issues are detected, Kubernetes can roll back the

updates to the previous stable version.

F. Built-in Health Checks (Liveness and Readiness

Probes)

Kubernetes provides built-in health checks known as

liveness and readiness probes. Liveness probes detect and

restart unhealthy containers, while readiness probes

determine whether a container is ready to serve traffic.

These probes help ensure the reliability and availability of

applications.

G. Autoscaling

Kubernetes includes horizontal pod autoscaling, which

automatically adjusts the number of pod replicas based on

observed CPU utilization or other select metrics. This

feature ensures that applications can handle varying loads

efficiently.

H. Redundancy and Failover

Kubernetes enhances application resilience through

redundancy and failover mechanisms. By distributing pods

across multiple nodes and clusters, Kubernetes ensures that

applications remain available even if individual nodes or

clusters fail. This redundancy is crucial for high availability

and disaster recovery.

I. Provider-Agnostic

Kubernetes can be deployed on-premises and in various

cloud environments, providing the same set of features

regardless of the underlying infrastructure. This provider-

agnostic nature allows organizations to avoid vendor lock-

in and leverage hybrid or multi-cloud strategies.

J. Utilizing Provider-Specific Feature

While Kubernetes is inherently provider-agnostic, it can

leverage provider-specific features to enhance

functionality and performance. On AWS, for example,

Kubernetes integrates with AWS Load Balancers for

efficient traffic management and high availability,

dynamically routing traffic and scaling based on demand.

It also utilizes Amazon Elastic Block Store (EBS) for

persistent storage, ensuring data durability and consistent

I/O performance crucial for stateful applications. These

integrations enable Kubernetes to capitalize on AWS's

robust infrastructure, including advanced security,

automated patching, and monitoring, allowing

organizations to efficiently build, deploy, and manage

containerized applications while adhering to best practices

in security and compliance.

K. Self-Healing

Kubernetes has self-healing capabilities that automatically

replace failed containers and reschedule pods on healthy

nodes. This self-healing nature helps maintain application

availability and minimizes manual intervention.

L. Service Discovery

Kubernetes provides service discovery mechanisms that

allow containers to find and communicate with each other

within the cluster. Services in Kubernetes expose a stable

IP address and DNS name, making it easier for

applications to discover and connect to each other.

M. Load Balancing

Kubernetes includes built-in load balancing features that

distribute traffic across multiple pods, ensuring efficient

resource utilization and high availability. This load

balancing can be internal within the cluster or external to

route traffic from outside the cluster to the appropriate

services.

N. Storage Orchestration

Kubernetes supports storage orchestration, allowing users

to mount persistent storage volumes to containers. This

feature is essential for stateful applications that require data

persistence. Kubernetes can manage storage from various

providers, including cloud-based storage solutions like

Amazon EBS or Google Cloud Persistent Disks.

CASE STUDY: AMAZON EKS

Amazon Elastic Kubernetes Service (EKS) is a managed

Kubernetes service provided by AWS that facilitates the

scaling, management, and deployment of containerized

applications. Typically, EKS operates within the Amazon

public cloud but also supports on-premises deployments. The

Kubernetes management infrastructure of Amazon EKS

spans multiple Availability Zones (AZs), ensuring high

availability. EKS's Kubernetes-conformant certification

enables seamless integration with existing tools and

workflows.

https://najer.org/najer

Volume 2 Issue 3, July-September 2021

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
https://najer.org/najer

Fig 3 EKS Components

O. Clusters

EKS clusters are composed of two main components: the

control plane and worker nodes. Each cluster operates

within its own fully managed Virtual Private Cloud (VPC),

providing a secure and isolated network environment.

i. Control Plane:

▪ The control plane is the central management entity

for EKS clusters, comprising three master nodes

distributed across different AZs (Availability Zones)

to ensure high availability and fault tolerance. This

distribution ensures that the cluster remains

operational even if one AZ experiences an outage.

▪ Incoming traffic directed to the Kubernetes API is

routed through the AWS Network Load Balancer

(NLB). The NLB provides a single endpoint for API

access and distributes traffic across the control plane

nodes, ensuring load balancing and redundancy. This

setup helps in maintaining consistent performance

and reliability.

ii. Worker Nodes:

▪ Worker nodes are the machines where application

containers are run. In EKS, these nodes run on

Amazon EC2 instances within a VPC that users can

configure and manage. This flexibility allows users

to tailor the network configuration to meet specific

security and performance requirements.

▪ The worker nodes connect to the control plane via

the Kubernetes API, authenticated using a

certificate. This secure communication ensures that

the nodes can efficiently receive instructions and

updates from the control plane while maintaining

the integrity of the operations.

iii. Deployment Options:

▪ Single Cluster per Environment/Application: Users

can choose to deploy a separate EKS cluster for each

environment (development, staging, production) or

application. This isolation simplifies resource

management and can enhance security by

segregating different workloads.

▪ Multiple Applications in a Single

Cluster:Alternatively, a single EKS cluster can host

multiple applications. Using IAM security policies

and Kubernetes namespaces, users can enforce fine-

grained access control and resource allocation,

ensuring that each application operates within its

designated boundaries. This approach can optimize

resource utilization and reduce costs by sharing

infrastructure among multiple applications.

The architecture of EKS clusters ensures that they are robust,

secure, and scalable, catering to various deployment

strategies and operational needs. By leveraging the managed

infrastructure of AWS, EKS abstracts much of the

complexity associated with running Kubernetes, allowing

users to focus on developing and deploying their applications.

P. Nodes:

EKS supports three primary methods for scheduling pods:

self-managed nodes, managed node groups, and Amazon

Fargate.

i. Self-Managed Nodes:

▪ EC2 instances running Kubernetes pods, organized

into node groups.

ii. Managed Node Groups:

▪ Facilitate automated lifecycle management,

simplifying node creation, updates, and terminations.

▪ Managed via EC2 Auto Scaling groups.

iii. Amazon Fargate:

▪ Serverless container service that eliminates the need

for managing underlying infrastructure.

▪ Charges only for actual vCPUs and memory used.

Fig 4. Nginx APP on EKS Fargate [12]

Q. Networking

Networking in EKS involves creating a Virtual Private

Cloud (VPC) that hosts the EKS cluster and configuring

subnets, route tables, and security groups to control traffic

flow and ensure secure communication between cluster

components and external services. The networking setup

is crucial for both the control plane and the node

networking.

i. Control Plane Networking:

https://najer.org/najer

Volume 2 Issue 3, July-September 2021

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
https://najer.org/najer

The control plane in EKS operates within a VPC

managed by AWS, ensuring isolation and security.

AWS handles the provisioning and management of

this VPC, which includes:

▪ Endpoint Access:The Kubernetes API server is

accessible via a public or private endpoint. Public

access allows interaction with the API server from

the internet, while private access restricts it to

within the VPC.

▪ Network Load Balancer (NLB):Incoming API

requests are distributed across multiple master

nodes using an NLB, ensuring load balancing and

fault tolerance.

▪ Security Groups: Security groups associated with

the control plane allow fine-grained control over

inbound and outbound traffic, ensuring that only

authorized entities can communicate with the API

server.

ii. Node Networking:

Node networking involves configuring the network

components that enable communication between

worker nodes, pods, and external resources. Key

aspects include:

▪ Subnets:Worker nodes are deployed within

subnets defined in the user’s VPC. These subnets

can be public or private, depending on the security

and accessibility requirements.

▪ Route Tables: Route tables control the routing of

traffic within the VPC. Routes are defined to

ensure that traffic between pods, nodes, and

external services is handled correctly.

▪ Security Groups:Security groups associated with

worker nodes control the flow of traffic to and

from the nodes. These rules are critical for

maintaining the security of the applications

running on the nodes.

▪ Elastic Network Interfaces (ENIs):Each pod can

be assigned an ENI, providing it with a unique IP

address and enhancing network isolation and

security.

▪ AWS VPC CNI Plugin: This plugin integrates

Kubernetes with the VPC, allowing pods to use

the same networking infrastructure as other AWS

resources. It simplifies network configuration and

enhances performance by enabling native VPC

networking capabilities for Kubernetes pods.

R. Storage

For persistent storage, Amazon EBS provides reliable

data durability and consistent I/O performance, essential

for stateful applications.

i. Persistent Volume Claims (PVCs):

▪ Manage the lifecycle of storage volumes.

▪ Ensure seamless integration with the EKS

environment.

CONCLUSION

Containerization has revolutionized application development

by enhancing automation, scalability, and consistency.

Technologies like Docker, Kubernetes, and Amazon EKS

streamline the deployment and management of applications,

fostering efficiency and resilience. By leveraging

containerization, organizations can achieve significant

improvements in deployment efficiency, resource

optimization, and operational consistency, paving the way for

more agile and robust software systems.

In future developments, the integration of AI and machine

learning (ML) with containerized environments offers

promising advancements. AI-driven automation can further

optimize resource allocation and scaling, predict system

failures, and enhance security measures. Additionally, the

advent of serverless containers and edge computing will push

the boundaries of where and how containerized applications

can operate, providing new opportunities for innovation in

decentralized and latency-sensitive applications. As the

ecosystem of tools and technologies continues to evolve,

organizations that embrace these advancements will be well-

positioned to lead in the rapidly changing landscape of

application development and deployment.

REFERENCES

[1] “A Comprehensive Review on Containerization:
Evolution, Benefits, and Challenges", NCBI, 2021.
[Online].
Available: https://www.ncbi.nlm.nih.gov/pmc/articles/P
MC7967216/#B20-sensors-21-01910. [Accessed: 20-
Jul-2021]

[2] "Containerization: A Beginner's Guide to its Impact on
Software Development", DEV Community, 2020.
[Online]. Available: https://dev.to/. [Accessed: 21-Jul-
2021.

[3] "What is Kubernetes?", LogRocket Blog, 2020.
[Online]. Available: https://blog.logrocket.com.
[Accessed: 23-Jul-2021].

[4] "Containerization Technologies Compared: Exploring
the Benefits of Docker, Kubernetes, and More",
EnableGeek, 2020. [Online]. Available:
https://www.enablegeek.com. [Accessed: 23-Jul-2021].

[5] "Amazon EKS", Amazon Web Services, 2020. [Online].
Available: https://aws.amazon.com/eks/. [Accessed: 24-
Jul-2021].

[6] "The role of containerization in DevOps",
containertools.dev, 2020. [Online]. Available:
https://containertools.dev. [Accessed: 24-Jul-2021].

[7] "Containerization: A Guide", Sageitinc.com, 2020.
[Online]. Available: https://sageitinc.com. [Accessed:
24-Jul-2021].

[8] "Kubernetes in the Cloud", cloudcomputing.media,
2020. [Online]. Available:
https://cloudcomputing.media. [Accessed: 27-Jul-2021].

[9] "Docker Technology: Revolutionizing Containerization
and Simplifying Deployment", Nestify.io, 2020.
[Online]. Available: https://nestify.io. [Accessed: 27-
Jul-2021].

[10] "16 Containerization Best Practices", Simform.com,
2020. [Online]. Available: https://www.simform.com.
[Accessed: 28-Jul-2021].

[11] "AWS EKS Architecture: Clusters, Nodes, and
Networks", BlueXP NetApp, May-2021. [Online].
Available: https://bluexp.netapp.com/blog/aws-cvo-blg-
aws-eks-architecture-clusters-nodes-and-
networks.[Accessed: 28-Jul-2021].

[12] "Building and Deploying Fargate with EKS in an
Enterprise Context Using the AWS Cloud Development
Kit and CDK8s," AWS, 2020. [Online].
Available: https://aws.amazon.com/blogs/containers/bui

https://najer.org/najer
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7967216/#B20-sensors-21-01910
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7967216/#B20-sensors-21-01910
https://bluexp.netapp.com/blog/aws-cvo-blg-aws-eks-architecture-clusters-nodes-and-networks
https://bluexp.netapp.com/blog/aws-cvo-blg-aws-eks-architecture-clusters-nodes-and-networks
https://bluexp.netapp.com/blog/aws-cvo-blg-aws-eks-architecture-clusters-nodes-and-networks
https://aws.amazon.com/blogs/containers/building-and-deploying-fargate-with-eks-in-an-enterprise-context-using-the-aws-cloud-development-kit-and-cdk8s/

Volume 2 Issue 3, July-September 2021

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
https://najer.org/najer

lding-and-deploying-fargate-with-eks-in-an-enterprise-
context-using-the-aws-cloud-development-kit-and-
cdk8s/. [Accessed: 28-Jul-2021].

https://najer.org/najer
https://aws.amazon.com/blogs/containers/building-and-deploying-fargate-with-eks-in-an-enterprise-context-using-the-aws-cloud-development-kit-and-cdk8s/
https://aws.amazon.com/blogs/containers/building-and-deploying-fargate-with-eks-in-an-enterprise-context-using-the-aws-cloud-development-kit-and-cdk8s/
https://aws.amazon.com/blogs/containers/building-and-deploying-fargate-with-eks-in-an-enterprise-context-using-the-aws-cloud-development-kit-and-cdk8s/

