
North American Journal of Engineering and Research

Est. 2020

Volume 2 Issue 2, April – June 2021

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

Balancing Agility and Operational Overhead:

Monolith Decomposition Strategies for Microservices

and Microapps with Event-Driven Architectures

Ramakrishna Manchana

Email: manchana.ramakrishna@gmail.com

Abstract

This paper investigates the transformation of monolithic architectures to microservices and microapps, examining the trade-off

between agility and operational overhead. We introduce the concept of the "Agility Spectrum," a novel framework to visualize this

trade-off, ranging from pure monoliths to highly granular microservices and microapps. We conduct a comprehensive literature

review, identifying gaps in current research regarding data migration, coexistence models, interface management, and the

quantification of agility's impact. Our methodology includes case study analysis, interviews, surveys, and the development of a

novel "Agility Index." Our findings reveal success and failure factors for data migration strategies, evaluate coexistence models,

examine interface management challenges, and quantify the impact of architectural choices on agility and operational overhead,

particularly highlighting the role of event-driven architecture. We offer actionable recommendations for organizations embarking

on this transformation journey and contribute to theoretical knowledge by refining the Agility Spectrum. This research empowers

organizations to make informed decisions about their architecture evolution and achieve an optimal balance between agility and

operational overhead

Keywords — Monolithic architecture, microservices, microapps, event-driven architecture, agility, operational overhead,

decomposition, modularity, scalability, resilience, data migration, coexistence, interface management

Introduction
In the dynamic landscape of modern software development,

agility and modularity have emerged as critical success factors.

Organizations strive to rapidly deliver new features, respond to

market changes, and continuously improve user experiences.

Traditional monolithic architectures, while offering initial

simplicity, often impede agility due to their inherent complexity

and tight coupling. This has spurred the rise of modular

architectures, particularly microservices and microapps, as

viable alternatives.

Microservices are small, independent services that work

together to form a larger application. They offer increased

scalability, flexibility, and resilience, allowing teams to develop,

deploy, and scale services independently. Microapps, on the

other hand, focus on the frontend or user interface layer,

providing a modular and lightweight approach to building user

experiences.

This paper explores the journey of decomposing monolithic

applications into microservices and microapps, navigating the

trade-offs between agility and operational overhead. We

introduce the "Agility Spectrum," a framework visualizing the

continuum from monolithic architectures to highly granular

microservice and microapp ecosystems. Each point on the

spectrum represents a different balance between agility and

operational efficiency.

https://najer.org/najer

Volume 2 Issue 2, April – June 2021

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

Figure 1.1: Agility Spectrum

Our research examines the strategies and challenges associated

with this decomposition process, highlighting the pivotal role of

event-driven architecture (EDA) in achieving a seamless and

efficient transformation. EDA promotes loose coupling and

asynchronous communication between components, enhancing

agility, scalability, and responsiveness.

Literature Review
The shift towards modularization and decomposition of

applications has a rich historical context. Early software systems

were predominantly monolithic due to technological limitations.

However, the advent of more powerful hardware, distributed

systems, and the need for faster development cycles led to the

rise of service-oriented architectures (SOA) and, more recently,

microservices and microapps. Research on microservices

emphasizes their benefits, such as improved scalability, fault

isolation, technology heterogeneity, and independent

deployability. However, challenges like increased operational

complexity, distributed data management, and inter-service

communication complexities also exist.

Figure 2.1: Monolithic vs Microservice Architecture

Microapps, being a relatively newer concept, have garnered

attention for their ability to enable rapid frontend development

and deployment. Research focuses on their technical

implementation, integration with microservices, and the benefits

they offer in terms of user experience and frontend performance.

Event-driven architecture (EDA) has been extensively studied

in various domains, emphasizing its role in facilitating loose

coupling, asynchronous communication, and real-time

responsiveness. However, its application in the context of

monolithic decomposition into microservices and microapps

remains an area with limited research.

This paper aims to address these gaps by exploring the interplay

between microservices, microapps, and EDA in the

decomposition process. We will examine the existing research

on each of these concepts, identify the gaps in current

knowledge, and propose a research agenda to further investigate

their combined impact on agility and operational overhead.

Methodology
Our research adopts a mixed-methods approach, combining

qualitative and quantitative data collection and analysis. We

conduct in-depth case studies of organizations at various stages

of their monolithic decomposition journey. These case studies

represent diverse industries, organization sizes, and application

domains, providing a comprehensive view of the challenges and

strategies employed.

We interview key stakeholders, including architects, developers,

operations personnel, and business leaders, to gather their

insights, experiences, and lessons learned. These interviews

provide valuable qualitative data on the decision-making

processes, implementation challenges, and perceived benefits of

the transformation.

To collect quantitative data, we administer surveys to

organizations that have undergone the decomposition process.

The surveys focus on agility metrics (e.g., time-to-market,

deployment frequency) as well as operational overhead

indicators (e.g., infrastructure costs, monitoring complexity).

We use statistical analysis to identify correlations and

relationships between these metrics and the architectural choices

made by organizations.

To further quantify the impact of architectural decisions, we

develop the "Agility Index," a multi-dimensional metric that

combines various agility and operational overhead factors. This

index allows us to compare the agility levels of different

architectures and identify optimal points on the Agility

Spectrum for different organizations.

Results And Analysis

Our case studies reveal a diverse landscape of approaches and

outcomes in monolithic decomposition. Successful

transformations are characterized by a strong focus on domain-

driven design, incremental migration strategies, effective

coexistence models, and robust data migration and interface

management practices. The adoption of event-driven

architecture is also found to be a key enabler of agility,

scalability, and responsiveness.

We identify several challenges faced by organizations during the

decomposition process. These include:

https://najer.org/najer

Volume 2 Issue 2, April – June 2021

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

• Data Migration: Ensuring data consistency and integrity

while migrating from a monolithic database to a distributed

data model.

• Coexistence: Managing the coexistence of the monolith

and new components during the transition period,

minimizing disruption to existing users and systems.

• Interface Management: Ensuring compatibility and

avoiding regressions as interfaces between microservices

and microapps evolve.

• Operational Complexity: Managing the increased

complexity of a distributed system, including monitoring,

logging, and troubleshooting.

• Cultural Shift: Adopting new ways of working, such as

DevOps practices and cross-functional teams, to support the

modular architecture.

Our Agility Index reveals a clear correlation between

architectural choices and agility outcomes. Organizations with

more modular architectures, composed of smaller and more

independent microservices and microapps, exhibit higher levels

of agility. However, this agility comes at the cost of increased

operational overhead.

The analysis of survey data confirms this trade-off.

Organizations with higher agility scores report increased

infrastructure costs, monitoring complexity, and the need for

specialized skills and tools. However, they also report faster

time-to-market, increased deployment frequency, and improved

ability to respond to changing business needs.

Figure 4.1: Agility Index Scoring

Figure 4.2: Distribution of Organizations across the Agility

Spectrum

Discussion
Our findings highlight the importance of carefully balancing

agility and operational overhead when decomposing monolithic

applications. The optimal balance depends on the specific

context and goals of each organization. Some organizations may

prioritize agility primarily, while others may place a higher

value on stability and predictability.

Micro Service and Micro App Design for Agility vs.

Operational Overhead

The design of microservices and microapps plays a crucial role

in achieving the desired balance between agility and operational

overhead.

Microservices:

• Service Granularity: The level of service granularity

significantly impacts agility and operational overhead.

Fine-grained services offer greater agility and flexibility,

allowing for independent development, deployment, and

scaling. However, they also increase the number of moving

parts, leading to higher operational overhead in terms of

inter-service communication, monitoring, and

management. The optimal granularity depends on the

specific application domain and the organization's risk

tolerance.

• Data Ownership: Microservices should adhere to the

principle of data ownership, where each service is

responsible for its own data and exposes it through well-

defined APIs. This promotes loose coupling and autonomy

but also introduces challenges in maintaining data

consistency and managing distributed transactions.

https://najer.org/najer

Volume 2 Issue 2, April – June 2021

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

Strategies like event sourcing and sagas can be employed to

address these challenges.

• Communication Protocols: Choosing the right

communication protocols is essential for ensuring efficient

and reliable inter-service communication. Synchronous

protocols like RESTful APIs are simple and easy to use but

can introduce latency and create dependencies between

services. Asynchronous protocols like message queues and

event buses improve scalability and decoupling but require

additional infrastructure and complexity. The choice of

communication protocol should be based on the specific

requirements of the application, such as the need for real-

time responsiveness or the volume of data being exchanged.

Microapps:

• Modularity and Reusability: Microapps should be

designed as modular and reusable components, allowing for

independent development and deployment. This promotes

agility by enabling teams to focus on specific features or

functionalities without impacting other parts of the

application. Frameworks like single-spa or Piral can be used

to facilitate the development and integration of microapps.

• Data Fetching and Caching: Microapps often rely on

fetching data from backend services. Implementing

efficient data fetching and caching mechanisms is crucial

for minimizing latency and improving the user experience.

Techniques like client-side caching, server-side caching,

and GraphQL can be employed to optimize data retrieval.

• Communication with Backend Services: Microapps

typically communicate with backend microservices through

APIs. Designing clear, well-documented, and versioned

APIs is essential for seamless integration and minimizing

the impact of changes in the backend. The use of API

gateways and contract testing can further enhance the

reliability and maintainability of these interfaces.

• UI Frameworks: Choosing the right UI framework is

important for ensuring a consistent and maintainable

frontend architecture. Popular frameworks like React,

Vue.js, and Angular offer a variety of tools and patterns for

building modular and scalable microapps. The choice of

framework should be based on the team's expertise, the

specific requirements of the application, and the desired

level of flexibility and customization.

Balancing Agility and Operational Overhead:

To strike the right balance between agility and operational

overhead, organizations can adopt several strategies:

• Automation: Automating repetitive tasks like testing,

deployment, and monitoring can significantly reduce

operational overhead and free up developers to focus on

delivering new features and functionality. Tools like

Jenkins, GitLab CI/CD, and Ansible can be used to

automate various stages of the software development

lifecycle.

• DevOps Practices: Implementing DevOps practices, such

as continuous integration and continuous delivery (CI/CD),

can streamline the development process and enable faster

and more frequent releases. This involves breaking down

silos between development, operations, and quality

assurance teams, fostering collaboration, and automating

the entire software delivery pipeline.

• Monitoring and Observability: Investing in robust

monitoring and observability tools can help organizations

quickly identify and troubleshoot issues in their

microservice and microapp architectures, ensuring system

stability and reliability. Tools like Prometheus, Grafana, and

ELK Stack can be used to collect, analyze, and visualize

metrics, logs, and traces from the distributed system.

• Service Mesh: Adopting a service mesh like Istio or

Linkerd can provide a unified way to manage inter-service

communication, security, and observability, reducing the

complexity of managing distributed systems. Service

meshes offer features like traffic management, load

balancing, circuit breaking, and service discovery, which

are essential for building resilient and scalable microservice

architectures.

Event-Driven Architecture (EDA) and its Impact:

Event-driven architecture (EDA) plays a crucial role in

monolithic decomposition into microservices and microapps.

By adopting an event-driven approach, organizations can

achieve loose coupling between components, enabling

independent development, deployment, and scaling. This

enhances agility by allowing teams to work on various parts of

the system without affecting each other.

EDA also facilitates real-time communication and

responsiveness. Microservices and microapps can react to

events as they occur, improving the overall system's

responsiveness and user experience. This is particularly

beneficial in scenarios where the monolith struggles to handle

high volumes of real-time interactions.

During the migration process, EDA can influence the

decomposition strategy by guiding the identification of service

boundaries based on the events they produce and consume. It

also encourages the use of asynchronous communication

patterns, which differ from the synchronous patterns often found

in monolithic architectures. This requires careful consideration

during migration to ensure smooth integration between new and

existing components.

EDA often involves a distributed data model, where each

microservice or microapp owns its data. This can impact data

migration strategies and require careful planning to ensure data

consistency and integrity throughout the transition.

Additionally, EDA introduces complexities in testing and

monitoring due to the asynchronous nature of communication.

https://najer.org/najer

Volume 2 Issue 2, April – June 2021

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

New tools and techniques may be required to effectively test and

monitor the behavior of components communicating through

events.

Case Studies
Case Study: Modernizing a Legacy Enterprise System with

Microservices and Event-Driven Architecture

• Background

A large enterprise faced challenges with its legacy monolithic

application, which hindered its ability to scale and adapt to

evolving business needs. The tightly coupled nature of the

monolith made it difficult to modify or scale individual

components, leading to slow development cycles and an

inability to respond quickly to market changes. The system also

struggled to handle peak loads, resulting in performance

bottlenecks and a suboptimal user experience.

• Solution

The organization embarked on a strategic initiative to modernize

its legacy application by decomposing it into a microservices

architecture, leveraging event-driven architecture (EDA) and

incremental migration strategies.

• Microservice Decomposition: The monolithic application

was carefully broken down into smaller, independent

microservices, each responsible for a specific business

capability. This involved identifying clear service

boundaries, defining APIs, and decoupling dependencies

between components. The goal was to create a more

modular and flexible architecture that could be developed,

deployed, and scaled independently.

• Event-Driven Architecture (EDA): EDA was adopted to

enable loose coupling and asynchronous communication

between microservices. An event streaming platform was

implemented to facilitate the exchange of events between

services, allowing for real-time data propagation and

improved responsiveness.

• Incremental Migration: The organization adopted a

phased approach to gradually migrate functionality from the

monolith to the new microservices. This allowed for

continuous delivery of value while minimizing disruption

to existing operations. The strangler fig pattern was

employed, where new functionality was implemented as

microservices, while the monolith was gradually

"strangled" as its capabilities were replaced.

• Coexistence: During the migration, the monolith and new

microservices coexisted, communicating through well-

defined APIs and the event streaming platform. This

ensured a smooth transition and allowed for the gradual

phasing out of the monolith.

• Data Migration: A robust data migration strategy was

developed to ensure data consistency and integrity

throughout the transition. The approach involved a

combination of techniques:

• Snapshot Migration: An initial snapshot of the monolithic

database was taken and migrated to the cloud environment

to establish a baseline for the new microservices.

• Incremental Migration: Subsequent changes to the

monolithic database were captured and incrementally

migrated to the cloud using change data capture (CDC)

techniques. This ensured that the cloud databases remained

synchronized with the on-premises system during the

transition.

• Delta Migration: For certain critical data entities, a delta

migration approach was employed, where only the changes

since the last snapshot were migrated. This optimized the

migration process for large datasets and reduced the overall

migration time.

• Message Broker Synchronization: A message broker was

used to establish real-time synchronization between the on-

premises and cloud databases. This ensured that any

updates or changes made in either environment were

immediately propagated to the other, maintaining data

consistency throughout the migration process.

• Container Orchestration: A container orchestration

platform was used to manage the deployment, scaling, and

management of the microservices. This provided a flexible

and scalable infrastructure for running the new

microservices, allowing for efficient resource utilization

and fault tolerance.

Case Study Conclusion:

The successful modernization of the legacy enterprise system

into a microservice-based architecture with event-driven

integration showcases the power of a strategic and phased

approach. By embracing domain-driven design, incremental

migration, coexistence strategies, and a robust data migration

plan incorporating snapshot, incremental, and delta migrations

with message broker synchronization, the organization achieved

significant improvements in agility, scalability, and operational

efficiency. The adoption of container orchestration further

https://najer.org/najer

Volume 2 Issue 2, April – June 2021

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

enhanced the scalability and manageability of the new

architecture. This case study underscores the importance of

careful planning, collaboration between teams, and the selection

of appropriate technologies to overcome the challenges inherent

in such a transformation. Ultimately, this modernization effort

enabled the enterprise to better respond to evolving business

needs, improve system performance, and enhance overall

customer satisfaction.

Case Study: Modernizing a Legacy Enterprise

System with Microservices and Event-Driven

Architecture

Background

A leading global beverage company faced challenges with its

legacy on-premises monolithic application built on Oracle DB

and IBM MQ. The system's inflexibility hindered agility and

innovation, making it difficult to adapt to the rapidly changing

market demands. The tightly coupled architecture limited

scalability and responsiveness, impacting the company's ability

to efficiently manage its vast supply chain and logistics

operations.

Solution

The company embarked on a strategic modernization journey to

decompose the monolith into a microservices architecture,

leveraging cloud technologies and event-driven architecture

(EDA) for enhanced agility and scalability.

• Phased Approach: The migration was executed

incrementally, starting with the application layer. The

monolithic application was gradually decomposed into

microservices and microapps, while the Oracle database

remained on-premises initially. The integration with the

existing IBM MQ messaging system was facilitated through

Azure Logic Apps, ensuring continuity during the

transition.

• Data Migration: The on-premises Oracle database was

subsequently migrated to Azure SQL using a combination

of snapshot, incremental, and delta migration strategies.

This ensured data consistency and minimal downtime

during the migration process. IBM MQ was leveraged to

synchronize data between the on-premises and cloud

environments.

• Event-Driven Architecture: The legacy IBM MQ

messaging system was eventually replaced with Azure

Event Grid, a fully managed event routing service. This

transition enabled a more scalable and flexible event-driven

architecture, facilitating seamless communication and

integration between microservices.

• Upstream Interface Migration: The final phase of the

modernization involved the migration of upstream

interfaces, ensuring compatibility and seamless integration

with external systems and partners.

Results

The modernization effort yielded significant benefits for the

beverage company:

• Increased Agility: The microservices architecture enabled

faster development cycles, independent deployment of

services, and quicker response to market changes.

• Improved Scalability: The cloud-native infrastructure and

microservices architecture allowed for dynamic scaling

based on demand, ensuring optimal performance and

resource utilization even during peak periods.

• Enhanced Resilience: The loose coupling of microservices

and the use of EDA improved fault isolation and resilience,

reducing the impact of failures and ensuring system

stability.

• Reduced Operational Overhead: The adoption of cloud

technologies and automation tools streamlined the

deployment and management of the system, reducing

manual effort and improving operational efficiency.

Case Study Conclusion:

This case study exemplifies a successful transformation of a

legacy monolithic application into a modern, cloud-native

microservices architecture with event-driven integration. The

phased approach, leveraging coexistence strategies and data

migration techniques, ensured a smooth transition while

minimizing disruption to business operations. The adoption of

event-driven architecture and cloud technologies further

enhanced agility, scalability, and resilience. This modernization

effort empowered the beverage company to better respond to

market dynamics, optimize its operations, and achieve greater

business efficiency.

Advanced Considerations in Microservices and Microapps

• Security in a Distributed World:

• Unique Challenges: Discuss the expanded attack surface,

inter-service communication risks, and data protection

complexities.

• Best Practices: Elaborate on API gateways, service meshes,

encryption, zero-trust, and RBAC.

• DevSecOps: Emphasize the importance of integrating

security throughout the development lifecycle.

• Performance Optimization for Scalability:

• Challenges: Address network latency, data serialization,

and distributed transactions.

• Strategies: Detail caching mechanisms, load balancing,

asynchronous communication, and reactive programming.

• Testing and Monitoring: Highlight the importance of load

testing, stress testing, and continuous monitoring for

optimal performance.

https://najer.org/najer

Volume 2 Issue 2, April – June 2021

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

• Real-World Success Stories and Industry Applications

• Netflix: Scaling for Global Entertainment: Netflix, the

streaming giant, faced challenges scaling its monolithic

architecture to meet the demands of its rapidly growing

global user base. They embarked on a journey to decompose

their monolith into hundreds of microservices, each

responsible for specific functions like content delivery,

recommendations, user management, and more. This

transition allowed Netflix to independently scale and

deploy individual services, accelerating feature

development, improving fault isolation, and enhancing

overall system resilience.

• Uber: Building a Reliable Ride-Hailing Platform: Uber's

platform needs to handle massive volumes of real-time data

to match riders with drivers, process payments, manage

maps, and more. A microservices architecture was

instrumental in achieving this. By breaking down their

system into smaller, independent services, Uber gained the

flexibility to scale individual components based on demand,

ensuring high availability and responsiveness even during

peak hours. This approach also facilitated rapid innovation,

allowing them to introduce new features and services

quickly.

• Industry-Specific Use Cases

• E-commerce: Companies like Amazon leverage

microservices to handle massive product catalogs, shopping

carts, and personalized recommendations, ensuring a

seamless customer experience.

• Finance: Banks and financial institutions adopt

microservices for modular banking applications, enabling

faster response to regulatory changes and personalized

customer offerings through microapps.

• Healthcare: Microservices facilitate the development of

patient portals, appointment scheduling systems, and

telemedicine platforms, while microapps provide

personalized health monitoring and information delivery.

• Manufacturing: Microservices help manage complex

supply chains, monitor equipment performance, and

optimize production processes, leading to increased

efficiency and reduced costs.

• Lessons Learned from Real-World Implementations

• Organizational Alignment: Success often hinges on

strong collaboration between development, operations, and

security teams (DevSecOps).

• Robust Testing and Monitoring: Thorough automated

testing and comprehensive monitoring are essential for

ensuring the reliability and performance of distributed

systems.

• Data Consistency and Transactions: Strategies for

managing data consistency and transactions across multiple

services need to be carefully considered.

• Gradual Migration: A phased approach to decomposition,

starting with smaller, less critical components, can mitigate

risks and ensure a smooth transition.

Best Practices

To successfully decompose a monolithic application into

microservices and microapps, organizations should adhere to

the following best practices:

• Domain-Driven Design (DDD): Align the software

architecture with the business domain. This involves

identifying bounded contexts, aggregates, and entities

within the domain and designing microservices or

microapps around these concepts.

• Incremental Migration: Gradually decompose the

monolith into smaller components, prioritizing the most

critical or high-value functionalities first. This approach

minimizes risk and allows for learning and adaptation

during the transition process.

• Coexistence: Implement strategies to allow the monolith

and new components to coexist during the migration. This

can be achieved through API gateways, anti-corruption

layers, or event-driven architectures.

• Data Migration: Develop a comprehensive data migration

strategy that addresses data consistency, integrity, and

synchronization. Consider using incremental data

extraction and transformation techniques to minimize

disruption to existing systems.

• Interface Management: Use versioning, contract testing,

and consumer-driven contracts to manage evolving

interfaces between microservices and microapps. This

ensures backward compatibility and prevents breaking

changes from impacting other components.

• Event-Driven Architecture (EDA): Leverage EDA to

enhance agility, scalability, and responsiveness. Design

microservices and microapps to communicate through

events, promoting loose coupling and asynchronous

communication.

• Automation: Automate repetitive tasks like testing,

deployment, and monitoring to reduce operational overhead

and free up developers to focus on delivering new features

and functionality.

• DevOps Practices: Implement CI/CD and other DevOps

practices to streamline the development process and enable

faster and more frequent releases. This involves breaking

down silos between development, operations, and quality

assurance teams, fostering collaboration, and automating

the entire software delivery pipeline.

• Monitoring and Observability: Invest in robust

monitoring and observability tools to gain insights into the

https://najer.org/najer

Volume 2 Issue 2, April – June 2021

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

behavior and performance of microservices and microapps.

This helps to quickly identify and troubleshoot issues,

ensuring system stability and reliability.

• Service Mesh: Consider adopting a service mesh to

simplify the management of inter-service communication

security, and observability in a complex microservice

architecture.

Technology Choices

There are numerous technology choices available for

implementing microservices, microapps, and event-driven

architectures. The selection of specific technologies should be

based on the organization's requirements, existing

infrastructure, and team expertise. Some popular choices

include:

• Microservices: Spring Boot (Java), Node.js (JavaScript),

Python (Flask, FastAPI), Go.

• Microapps: React, Vue.js, Angular, Svelte.

• EDA: Kafka, RabbitMQ, Amazon SNS/SQS, Google

Cloud Pub/Sub.

• Data Migration: Apache NiFi, Debezium, AWS DMS.

• Coexistence: API Gateways (Kong, Apigee), Istio,

Linkerd.

Future Trends and Challenges
The landscape of software architecture is in constant flux, and

the evolution of microservices, microapps, and event-driven

architectures is no exception. While these approaches have

already demonstrated their potential to enhance agility,

scalability, and resilience, several emerging trends and

challenges are poised to shape their future trajectory.

• Serverless Computing: The rise of serverless computing,

where developers focus on writing code without managing

the underlying infrastructure, is poised to revolutionize

microservice architectures. Serverless platforms, such as

AWS Lambda, Azure Functions, and Google Cloud

Functions, allow for fine-grained scaling and cost

optimization, aligning seamlessly with the principles of

microservices. However, challenges remain in areas like

cold starts, vendor lock-in, and the need for specialized

development and deployment practices.

• AI/ML Integration: The integration of artificial

intelligence (AI) and machine learning (ML) into

microservices and microapps is gaining momentum. AI/ML

can enable intelligent automation, decision-making, and

personalization, leading to more sophisticated and

adaptable applications. However, this integration also

introduces challenges in terms of data management, model

training, and deployment, as well as ethical considerations

surrounding the use of AI.

• Multi-Cloud and Hybrid Environments: As

organizations increasingly adopt multi-cloud and hybrid

strategies, deploying microservices and microapps across

diverse environments becomes a necessity. This presents

challenges in terms of interoperability, data consistency,

and security. New tools and technologies are emerging to

address these challenges, such as service meshes and cloud-

agnostic orchestration platforms.

• Observability and Chaos Engineering: Managing the

complexity of distributed systems composed of

microservices and microapps requires robust observability

and proactive resilience practices. Observability tools, such

as distributed tracing and log aggregation, provide insights

into system behavior and performance, enabling faster

troubleshooting and root cause analysis. Chaos engineering,

a practice of deliberately injecting failures into the system,

helps to identify weaknesses and improve overall resilience.

• Edge Computing: The rise of edge computing, where data

processing and computation occur closer to the source of

data, presents new opportunities for microservices and

microapps. Deploying microservices at the edge can reduce

latency, improve responsiveness, and enable new use cases

that require real-time processing of data. However, edge

computing also introduces challenges in terms of resource

constraints, network connectivity, and security.

• The Human Factor: As organizations adopt more modular

and distributed architectures, the need for collaboration,

communication, and cross-functional teams becomes

paramount. The success of microservice and microapp

transformations often hinges on the ability to foster a

culture of change, empower teams, and break down silos

between development, operations, and security.

The future of microservices, microapps, and event-driven

architectures is bright, but it is not without its challenges. By

staying abreast of emerging trends and proactively addressing

these challenges, organizations can continue to leverage these

architectural patterns to build adaptable, scalable, and resilient

systems that can thrive in the rapidly changing digital landscape.

Pros and Cons

Architecture Pros Cons

Monolith

Simpler

development and

deployment,

easier testing

Scaling challenges, tight

coupling, slower

development cycles

Microservices

Scalability,

flexibility,

resilience,

Increased complexity,

operational overhead,

https://najer.org/najer

Volume 2 Issue 2, April – June 2021

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

independent

deployment

distributed data

management

Microapps

Rapid frontend

development,

improved user

experience,

modularity

Potential for

fragmentation,

coordination challenges

with backend

Event-Driven

(EDA)

Loose coupling,

scalability, real-

time

responsiveness

Increased complexity,

potential for event

overload, requires robust

monitoring

Conclusion

The transformation from monolithic architectures to

microservices and microapps, complemented by event-driven

architecture, offers a pathway to achieving greater agility,

scalability, and responsiveness in software development.

However, this journey is not without its challenges, requiring

careful planning, execution, and a deep understanding of the

trade-offs involved.

Our research highlights the importance of adopting a holistic

approach that considers the interplay between microservices,

microapps, and EDA. By leveraging domain-driven design,

incremental migration strategies, effective coexistence models,

robust data migration, interface management, automation,

DevOps practices, monitoring tools, and service meshes,

organizations can navigate the Agility Spectrum and

successfully transition to a more modern and adaptable

architecture.

While our findings provide valuable insights and

recommendations, we acknowledge the need for further research

to explore the long-term impact of these architectural choices on

organizational performance, innovation, and customer

satisfaction. Additionally, future research should investigate the

role of emerging technologies in shaping the future of modular

application development, ultimately empowering organizations

to build systems that can thrive in the ever-evolving digital

landscape.

Glossary Of Terms

• Monolithic Architecture: A software architecture where

all components of an application are tightly coupled and run

as a single unit.

• Microservices: A software architecture where an

application is composed of small, independent services that

communicate over well-defined APIs.

• Microapps: Small, focused applications designed for

specific tasks or user experiences, often used in mobile or

web contexts.

• Event-Driven Architecture (EDA): A software

architecture pattern where decoupled components

communicate by producing and consuming events.

• Agility: The ability of an organization to respond quickly

to changes in the market or business environment.

• Operational Overhead: The resources and effort required

to maintain and operate a software system.

• Decomposition: The process of breaking down a

monolithic application into smaller, independent

components.

• Modularity: The degree to which a system's components

can be separated and recombined.

• Scalability: The ability of a system to handle a growing

amount of work.

• Resilience: The ability of a system to recover from failures.

References
[1] Richardson, C. (2018). Microservices Patterns: With

examples in Java. Manning Publications.

[2] Fowler, M. (2014). Microservices. martinfowler.com.

[3] Vernon, V. (2016). Domain-Driven Design Distilled.
Addison-Wesley Professional.

[4] Evans, E. (2003). Domain-Driven Design: Tackling
Complexity in the Heart of Software. Addison-Wesley
Professional.

[5] Dragoni, N., Giallorenzo, S., & Mazzara, M. (2017).
Microservices antipatterns: Consequences on
maintainability and evolution. 2017 IEEE International
Conference on Software Architecture (ICSA), 152–162.

[6] Zimmermann, O. (2017). Microservices tenets: Agile,
autonomous, automated, API-centric, accurate, accessible,
actionable, available, and adaptable. IEEE Software, 34(3),
94–98.

[7] Richards, M. (2015). Software Architecture Patterns.
O'Reilly Media.

[8] Nadareishvili, I., Mitra, R., McLarty, M., & Amundsen,
M. (2016). Microservice Architecture. O'Reilly Media.

[9] Balalaie, A., Heydarnoori, A., & Jamshidi, P. (2016).
Microservices architecture enables DevOps: Migration to a
cloud-native architecture. IEEE Software, 33(3), 42–52.

[10] Hohpe, G., & Woolf, B. (2003). Enterprise Integration
Patterns: Designing, Building, and Deploying Messaging
Solutions. Addison-Wesley Professional.

[11] Kleppmann, M. (2017). Designing Data-Intensive
Applications. O'Reilly Media.

[12] Cockcroft, A. (2015). Netflix: Building a Culture of
Freedom and Responsibility.

[13] Cockcroft, A., & Glover, D. (2015). Scaling at Netflix:
Rapid Growth and Open Source Tools. QCon San
Francisco.

[14] Uber Engineering. (2016). The Uber Engineering Tech
Stack, Part I: The Foundation.

[15] Uber Engineering. (2018). The Evolution of the Uber
Engineering Tech Stack.

[16] Fowler, M. (2014). Microservices. martinfowler.com.

[17] Nginx. (2020). Microservices: From Design to
Deployment.

https://najer.org/najer

