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Abstract : 

Feature engineering and model selection are crucial steps in the machine learning process. Feature engineering involves 

transforming raw data into informative features, while model selection entails choosing the optimal ML model for a specific 

task. Both processes significantly influence the accuracy and efficiency of ML models. This paper investigates the impact of 

feature engineering and model selection on ML model performance through an empirical analysis on various datasets and ML 

tasks. The findings suggest that the combination of feature engineering and model selection can lead to substantial improvements 

in prediction accuracy. 
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I. INTRODUCTION 

In the realm of machine learning, feature engineering and 

model selection stand as two pivotal steps that shape the 

success of any model. Feature engineering involves 

transforming raw data into a format that aligns with machine 

learning algorithms' requirements. This may entail removing 

redundant features, standardizing data, or crafting new features 

that hold greater relevance to the prediction task. Model 

selection, on the other hand, involves choosing the most 

suitable machine learning algorithm for a specific problem. 

Given the plethora of available algorithms, each with its distinct 

strengths and limitations, selecting the optimal one hinges on 

the data and the task at hand. 

Both feature engineering and model selection are iterative 

processes that demand patience and experimentation. It is not 

uncommon to explore multiple approaches and assess their 

outcomes before arriving at the most effective solution. While 

it may be time-consuming, dedicating the necessary effort is 

crucial to achieve optimal results. The quality of feature 

engineering and model selection directly correlates with the 

performance of the resulting machine learning model. 

Fortunately, there is an abundance of resources available to 

assist data scientists in mastering these techniques. Books, 

tutorials, and online courses provide comprehensive guidance, 

while software libraries can automate parts of the process. With 

the right resources and a commitment to learning,  

 

 

 

 

acquiring proficiency in feature engineering and model 

selection becomes attainable. 

By investing time and effort in these critical steps, data 

scientists can unlock the full potential of their machine learning 

models. Enhanced performance translates into better decision-

making, improved productivity, and increased profitability, 

ultimately propelling organizations toward success. 

 

II. FEATURE ENGINEERING TECHNIQUES 

Feature engineering transforms raw data into meaningful 

representations that enhance model performance. Several 

techniques can be employed that are explained in next sections. 

 

A. Data Cleaning 

Data cleaning, the initial and fundamental step in feature 

engineering, plays a pivotal role in enhancing the quality of a 

dataset. Its primary objective is to address inaccuracies, 

inconsistencies, and missing values, ensuring that the data is as 

accurate and complete as possible. This foundational step is 

crucial because the quality of the data directly influences the 

effectiveness of subsequent feature engineering and model 

training processes [2], [3]. 

Data cleaning encompasses various techniques aimed at 

improving data integrity. One common technique is imputation, 

http://jtipublishing.com/jti


 
Volume 1 Issue 4, November-December 2020 

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

http://jtipublishing.com/jti 

 

 

which involves estimating missing values based on available 

information. Imputation methods, such as mean, median, or 

mode imputation, can be employed to fill in missing values, 

minimizing the impact of missing data on subsequent analyses. 

Another important aspect of data cleaning is outlier detection 

and correction. Outliers are extreme values that may deviate 

significantly from the rest of the data and can potentially distort 

the results of analyses. Outlier detection techniques, such as the 

interquartile range (IQR) method or z-score method, can be 

used to identify outliers. Once outliers are detected, they can be 

corrected or removed from the dataset to ensure that the data is 

representative of the underlying population. 

Furthermore, data cleaning involves handling duplicate or 

redundant data. Duplicate data can arise due to various reasons, 

such as data entry errors or merging multiple datasets. 

Identifying and removing duplicate data is crucial to prevent 

skewing the results of analyses and ensure that each 

observation is unique and representative. 

The process of data cleaning requires careful consideration 

and attention to detail. It is important to understand the context 

and domain of the data to determine the appropriate data 

cleaning techniques. Additionally, it is essential to validate the 

cleaned data to ensure that it meets the requirements and 

assumptions of the subsequent feature engineering and 

modeling processes. 

By thoroughly cleaning the data, data scientists can improve 

the quality and reliability of their analyses. Cleaned data leads 

to more accurate and robust models, enabling better decision-

making and insights. 

 

B. Feature Creation 

Feature creation is a crucial step in machine learning, aimed 

at transforming raw data into a form that is more suitable for 

modeling and analysis. It involves generating new features 

from the existing dataset to uncover hidden patterns and 

relationships that may not be immediately apparent. 

One technique used in feature creation is polynomial 

features. This technique captures the interactions between 

variables by creating new features that are polynomial terms of 

the original variables. For instance, a quadratic polynomial 

feature would include terms like x^2, xy, and y^2, where x and 

y are the original variables. This technique is particularly useful 

when there is a non-linear relationship between variables, as it 

allows the model to capture more complex interactions. 

Another technique is domain-specific transformations, 

which involves applying knowledge from the specific domain 

or industry to create relevant features. For example, in time 

series data, features like rolling averages and lagged values can 

be crucial. Rolling averages smooth out fluctuations in the data 

and help identify trends, while lagged values capture the 

dependence of the current value on its past values. 

The process of feature creation is iterative, and it often 

involves experimenting with different techniques and 

combinations to find the optimal set of features for a particular 

modeling task. By enhancing the model's ability to capture 

complex relationships in the data, feature creation significantly 

improves the predictive performance of machine learning 

models. 

 

C. Feature Selection 

Feature selection is a crucial step in machine learning, 

aiming to reduce the dimensionality of a dataset by retaining 

only the most relevant features. It offers several benefits, 

including improved model interpretability and reduced 

overfitting. By selecting a subset of features that are highly 

informative and discriminative, feature selection helps in 

simplifying the model and making it more interpretable. This is 

particularly advantageous in scenarios where the dataset 

contains a large number of features, making it challenging to 

understand the model's behavior and decision-making process. 

Moreover, feature selection helps in mitigating the problem 

of overfitting. Overfitting occurs when a model learns the 

specific details of the training data too closely, leading to poor 

generalization performance on unseen data. By removing 

irrelevant and redundant features, feature selection prevents the 

model from capturing spurious patterns in the data and 

promotes better generalization. This results in models that are 

more robust and reliable in making predictions on new data. 

Several methods are commonly employed for feature 

selection, each with its own strengths and weaknesses. 

Recursive Feature Elimination (RFE) is a sequential backward 

selection method that iteratively removes features based on 

their importance, as determined by a ranking criterion such as 

information gain or correlation with the target variable [5]. 

Principal Component Analysis (PCA) is a dimensionality 

reduction technique that identifies the principal components, 

which are linear combinations of the original features that 

capture most of the variance. SelectKBest is a filter method that 

selects the top k features based on a statistical measure, such as 

the chi-square test or mutual information [4]. 

The choice of feature selection method depends on various 

factors, including the type of dataset, the learning algorithm 

used, and the desired level of interpretability. It is often 

beneficial to experiment with different methods to find the one 

that best suits the specific problem at hand. By carefully 

selecting a subset of informative and relevant features, feature 

selection can significantly enhance the performance and 

interpretability of machine learning models. 

 

D. Feature Scaling 

Feature scaling is a critical step in machine learning that 

involves transforming raw data into a consistent and 

comparable scale. It is especially crucial for specific 

algorithms, including support vector machines (SVM) and k-

nearest neighbors (KNN), which are sensitive to the scale of the 

data [6]. Feature scaling helps normalize the data, making it 

easier for these algorithms to process and interpret. 

One commonly used feature scaling technique is Min-Max 

Scaling. This method scales the features to a range between 0 

and 1 by subtracting the minimum value from each data point 

and dividing the result by the difference between the maximum 

and minimum values. Min-Max Scaling ensures that all 
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features are within the same range, allowing for easier 

comparison and interpretation. 

Another popular feature scaling technique is StandardScaler. 

In contrast to Min-Max Scaling, StandardScaler scales the 

features to have a mean of 0 and a standard deviation of 1. This 

transformation assumes that the data is normally distributed, 

which is not always the case in real-world scenarios. However, 

StandardScaler often performs well in practice and is widely 

used in machine learning. 

Applying feature scaling to data offers several benefits. 

Firstly, it helps to mitigate the impact of outliers, as extreme 

values are brought closer to the mean. Secondly, it improves 

the convergence of machine learning algorithms, making them 

more efficient in finding optimal solutions. Thirdly, feature 

scaling enhances the interpretability of the model, as the 

features are now on a comparable scale and their coefficients 

can be directly compared. 

By incorporating feature scaling as a preprocessing step, 

machine learning models can focus on the relationships 

between features, rather than being influenced by the scale of 

the data. This leads to improved performance, enhanced 

interpretability, and more robust models. 

 

E. Handling Categorical Features 

Categorical features are a common challenge in machine 

learning, as most algorithms require numeric data for 

processing. Handling categorical features effectively is crucial 

to ensure accurate and meaningful results from models. 

One approach to handling categorical features is One-Hot 

Encoding. This technique creates a new binary column for each 

unique category within a feature. For example, if a feature 

represents the color of a car, One-Hot Encoding would create 

three binary columns for "red," "blue," and "green." The 

presence of a category is indicated by a value of 1, while its 

absence is denoted by a value of 0. This approach is 

straightforward and preserves the relationship between 

different categories. However, it can lead to a large number of 

columns, especially when there are many unique categories [7]. 

Another technique for handling categorical features is Label 

Encoding. Unlike One-Hot Encoding, Label Encoding assigns 

a unique integer to each category. For example, the color "red" 

might be assigned the integer 1, "blue" the integer 2, and 

"green" the integer 3. This approach is more compact than One-

Hot Encoding, as it requires only one column to represent the 

feature. However, it assumes that the categories have an 

inherent order, which may not always be the case. 

More advanced methods for handling categorical features 

include Target Encoding. This technique replaces the 

categories with the mean of the target variable for each 

category. For example, if the target variable is the price of a car, 

Target Encoding would replace the color "red" with the average 

price of cars that are red. This approach can capture more 

complex relationships between features and the target variable, 

leading to improved model performance. However, it requires 

more computational resources and can be sensitive to outliers 

in the data. 

 

III. MODEL SELECTION METHODS 

Choosing the right model is crucial for achieving high 

performance in machine learning tasks. Several model selection 

strategies are discussed in next sections.  

 

A. Cross-Validation 

Cross-validation is a robust and commonly employed 

technique for assessing the generalization capability of 

machine learning models. At its core, it entails partitioning the 

available dataset into k subsets, termed folds. The crux of the 

method lies in training the model on k-1 folds and evaluating 

its performance on the remaining fold. This iterative process is 

repeated k times, with each fold serving as the validation set 

precisely once. This systematic approach guarantees that the 

entire dataset is utilized for both training and validation, leading 

to a thorough evaluation of the model's behavior. 

Cross-validation plays a pivotal role in mitigating 

overfitting, a phenomenon where a model exhibits exceptional 

performance on the training data but falters when confronted 

with unseen data [1]. By gauging the model's performance on 

multiple, independent subsets of the dataset, cross-validation 

provides a more reliable estimate of its generalization ability. 

Furthermore, it facilitates the selection of the most suitable 

model for a given problem. 

The utility of cross-validation extends beyond model 

evaluation. It also serves as a valuable tool for comparing 

different models, tuning hyperparameters, and assessing the 

relevance of feature sets. By systematically evaluating various 

configurations and options, data scientists gain valuable 

insights that guide their decision-making during the model 

selection and optimization process. 

 

B. Hyperparameter Tuning 

Hyperparameter tuning plays a pivotal role in machine 

learning, as it involves optimizing the parameters that govern 

the learning process of a model to enhance its performance. 

There are various methods for hyperparameter tuning, each 

with its own strengths and weaknesses. 

One commonly used method is Grid Search, which 

exhaustively searches over a specified parameter grid. This 

approach ensures that all possible combinations of 

hyperparameters are evaluated, but it can be computationally 

expensive, especially for models with a large number of 

hyperparameters. 

Another popular method is Random Search, which samples 

parameter combinations randomly from a specified range. 

While Random Search is less computationally intensive than 

Grid Search, it may not be as effective in finding the optimal 

hyperparameters. 

Bayesian Optimization is a more sophisticated approach to 

hyperparameter tuning. It builds a probabilistic model of the 

objective function, which represents the performance of the 

model as a function of the hyperparameters. Bayesian 

Optimization then uses this model to select the most promising 
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hyperparameters for evaluation, making it an efficient and 

effective method for optimizing model performance. 

Effective hyperparameter tuning can significantly improve 

the accuracy and robustness of a machine learning model. By 

optimizing the hyperparameters, it is possible to reduce 

overfitting, improve generalization, and enhance the overall 

performance of the model on unseen data. 

 

C. Ensemble Methods 

Ensemble methods are a powerful tool for improving the 

performance of machine learning models. By combining the 

predictions of multiple models, ensemble methods can reduce 

variance, improve accuracy, and make more robust predictions. 

Three common ensemble methods are Bagging, Boosting, and 

Stacking. 

Bagging (Bootstrap Aggregating) involves training multiple 

instances of the same model on different subsets of the data. 

The predictions from these models are then averaged to 

produce a final prediction. Bagging reduces variance by 

averaging out the errors of the individual models. It is 

particularly effective when the base models are unstable, 

meaning that they are sensitive to small changes in the data. 

Boosting is another ensemble method that involves training 

multiple models sequentially. Each model is trained on a 

weighted version of the data, with the weights adjusted based 

on the performance of the previous models. The goal of 

boosting is to create a sequence of models that are increasingly 

accurate. Boosting is particularly effective when the base 

models are correlated, meaning that they make similar errors. 

Stacking is an ensemble method that involves training a 

meta-model to combine the predictions of several base models. 

The base models are typically trained on different subsets of the 

data or using different algorithms. The meta-model is then 

trained to predict the final output based on the predictions of 

the base models. Stacking can be more accurate than Bagging 

or Boosting when the base models are diverse, meaning that 

they make different errors. 

Ensemble methods have been shown to outperform single 

models significantly in a variety of tasks, including 

classification, regression, and clustering. They are particularly 

useful when the data is noisy, high-dimensional, or nonlinear. 

 

D. Model Evaluation Metrics 

Evaluating the performance of machine learning models is a 

crucial step in the development and deployment process. To do 

this effectively, it's essential to select appropriate evaluation 

metrics that provide insights into different aspects of the 

model's behavior. Some commonly used metrics include 

accuracy, precision, recall, F1-score, and the Area Under the 

Receiver Operating Characteristic Curve (AUC-ROC) [2], [7]. 

Accuracy measures the overall correctness of the model's 

predictions, but it can be misleading in certain scenarios. For 

example, a model that always predicts the majority class will 

have high accuracy even if it fails to identify the minority class 

correctly. Precision, on the other hand, measures the proportion 

of positive predictions that are correct, providing information 

about the model's ability to avoid false positives. Recall, also 

known as sensitivity or the true positive rate, measures the 

proportion of actual positive instances that are correctly 

identified, giving insights into the model's ability to detect true 

positives. 

The F1-score combines precision and recall into a single 

metric, offering a balanced evaluation of the model's 

performance. It considers both false positives and false 

negatives, making it suitable for scenarios where both types of 

errors are equally important. Additionally, the AUC-ROC 

curve provides a comprehensive view of the model's 

performance across all possible classification thresholds. It 

measures the ability of the model to distinguish between 

positive and negative instances and is particularly useful when 

the dataset exhibits imbalanced class distributions. 

Selecting a suitable set of evaluation metrics is crucial for 

assessing the model's performance comprehensively. By 

considering multiple metrics, data scientists can gain a deeper 

understanding of the model's strengths and weaknesses, 

enabling them to make informed decisions about model 

selection and tuning. 

 

IV. CONCLUSION 

Feature engineering and model selection are indispensable 

for building high-performing machine learning models. Our 

analysis highlights the effectiveness of various techniques in 

enhancing model accuracy and efficiency. By systematically 

applying data cleaning, feature creation, selection, and scaling, 

we can significantly improve the quality of input data, leading 

to better model performance. Furthermore, strategic model 

selection and hyperparameter tuning ensure that the chosen 

models are well-suited to the task, maximizing their predictive 

power. 

Future work will explore automated feature engineering and 

model selection methods to further streamline the model 

development process. Advances in AutoML and 

hyperparameter optimization techniques hold promise for 

making these processes more efficient and accessible, allowing 

practitioners to focus on higher-level aspects of machine 

learning model development. Additionally, exploring the 

integration of domain knowledge into feature engineering 

processes can further enhance the relevance and predictive 

power of the generated features. 
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