
North American Journal of Engineering and

Research

Est. 2020

Volume 1 Issue 4, November-December 2020

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

http://jtipublishing.com/jti

Enhancing ML Model Performance through Feature

Engineering and Model Selection
Pushkar Mehendale

Troy, MI, USA

pushkar.mehendale@yahoo.com

Abstract :

Feature engineering and model selection are crucial steps in the machine learning process. Feature engineering involves

transforming raw data into informative features, while model selection entails choosing the optimal ML model for a specific

task. Both processes significantly influence the accuracy and efficiency of ML models. This paper investigates the impact of

feature engineering and model selection on ML model performance through an empirical analysis on various datasets and ML

tasks. The findings suggest that the combination of feature engineering and model selection can lead to substantial improvements

in prediction accuracy.

Keywords: Feature Engineering, Model Selection, Machine Learning, Prediction Accuracy, Empirical Analysis

I. INTRODUCTION

In the realm of machine learning, feature engineering and

model selection stand as two pivotal steps that shape the

success of any model. Feature engineering involves

transforming raw data into a format that aligns with machine

learning algorithms' requirements. This may entail removing

redundant features, standardizing data, or crafting new features

that hold greater relevance to the prediction task. Model

selection, on the other hand, involves choosing the most

suitable machine learning algorithm for a specific problem.

Given the plethora of available algorithms, each with its distinct

strengths and limitations, selecting the optimal one hinges on

the data and the task at hand.

Both feature engineering and model selection are iterative

processes that demand patience and experimentation. It is not

uncommon to explore multiple approaches and assess their

outcomes before arriving at the most effective solution. While

it may be time-consuming, dedicating the necessary effort is

crucial to achieve optimal results. The quality of feature

engineering and model selection directly correlates with the

performance of the resulting machine learning model.

Fortunately, there is an abundance of resources available to

assist data scientists in mastering these techniques. Books,

tutorials, and online courses provide comprehensive guidance,

while software libraries can automate parts of the process. With

the right resources and a commitment to learning,

acquiring proficiency in feature engineering and model

selection becomes attainable.

By investing time and effort in these critical steps, data

scientists can unlock the full potential of their machine learning

models. Enhanced performance translates into better decision-

making, improved productivity, and increased profitability,

ultimately propelling organizations toward success.

II. FEATURE ENGINEERING TECHNIQUES

Feature engineering transforms raw data into meaningful

representations that enhance model performance. Several

techniques can be employed that are explained in next sections.

A. Data Cleaning

Data cleaning, the initial and fundamental step in feature

engineering, plays a pivotal role in enhancing the quality of a

dataset. Its primary objective is to address inaccuracies,

inconsistencies, and missing values, ensuring that the data is as

accurate and complete as possible. This foundational step is

crucial because the quality of the data directly influences the

effectiveness of subsequent feature engineering and model

training processes [2], [3].

Data cleaning encompasses various techniques aimed at

improving data integrity. One common technique is imputation,

http://jtipublishing.com/jti

Volume 1 Issue 4, November-December 2020

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

http://jtipublishing.com/jti

which involves estimating missing values based on available

information. Imputation methods, such as mean, median, or

mode imputation, can be employed to fill in missing values,

minimizing the impact of missing data on subsequent analyses.

Another important aspect of data cleaning is outlier detection

and correction. Outliers are extreme values that may deviate

significantly from the rest of the data and can potentially distort

the results of analyses. Outlier detection techniques, such as the

interquartile range (IQR) method or z-score method, can be

used to identify outliers. Once outliers are detected, they can be

corrected or removed from the dataset to ensure that the data is

representative of the underlying population.

Furthermore, data cleaning involves handling duplicate or

redundant data. Duplicate data can arise due to various reasons,

such as data entry errors or merging multiple datasets.

Identifying and removing duplicate data is crucial to prevent

skewing the results of analyses and ensure that each

observation is unique and representative.

The process of data cleaning requires careful consideration

and attention to detail. It is important to understand the context

and domain of the data to determine the appropriate data

cleaning techniques. Additionally, it is essential to validate the

cleaned data to ensure that it meets the requirements and

assumptions of the subsequent feature engineering and

modeling processes.

By thoroughly cleaning the data, data scientists can improve

the quality and reliability of their analyses. Cleaned data leads

to more accurate and robust models, enabling better decision-

making and insights.

B. Feature Creation

Feature creation is a crucial step in machine learning, aimed

at transforming raw data into a form that is more suitable for

modeling and analysis. It involves generating new features

from the existing dataset to uncover hidden patterns and

relationships that may not be immediately apparent.

One technique used in feature creation is polynomial

features. This technique captures the interactions between

variables by creating new features that are polynomial terms of

the original variables. For instance, a quadratic polynomial

feature would include terms like x^2, xy, and y^2, where x and

y are the original variables. This technique is particularly useful

when there is a non-linear relationship between variables, as it

allows the model to capture more complex interactions.

Another technique is domain-specific transformations,

which involves applying knowledge from the specific domain

or industry to create relevant features. For example, in time

series data, features like rolling averages and lagged values can

be crucial. Rolling averages smooth out fluctuations in the data

and help identify trends, while lagged values capture the

dependence of the current value on its past values.

The process of feature creation is iterative, and it often

involves experimenting with different techniques and

combinations to find the optimal set of features for a particular

modeling task. By enhancing the model's ability to capture

complex relationships in the data, feature creation significantly

improves the predictive performance of machine learning

models.

C. Feature Selection

Feature selection is a crucial step in machine learning,

aiming to reduce the dimensionality of a dataset by retaining

only the most relevant features. It offers several benefits,

including improved model interpretability and reduced

overfitting. By selecting a subset of features that are highly

informative and discriminative, feature selection helps in

simplifying the model and making it more interpretable. This is

particularly advantageous in scenarios where the dataset

contains a large number of features, making it challenging to

understand the model's behavior and decision-making process.

Moreover, feature selection helps in mitigating the problem

of overfitting. Overfitting occurs when a model learns the

specific details of the training data too closely, leading to poor

generalization performance on unseen data. By removing

irrelevant and redundant features, feature selection prevents the

model from capturing spurious patterns in the data and

promotes better generalization. This results in models that are

more robust and reliable in making predictions on new data.

Several methods are commonly employed for feature

selection, each with its own strengths and weaknesses.

Recursive Feature Elimination (RFE) is a sequential backward

selection method that iteratively removes features based on

their importance, as determined by a ranking criterion such as

information gain or correlation with the target variable [5].

Principal Component Analysis (PCA) is a dimensionality

reduction technique that identifies the principal components,

which are linear combinations of the original features that

capture most of the variance. SelectKBest is a filter method that

selects the top k features based on a statistical measure, such as

the chi-square test or mutual information [4].

The choice of feature selection method depends on various

factors, including the type of dataset, the learning algorithm

used, and the desired level of interpretability. It is often

beneficial to experiment with different methods to find the one

that best suits the specific problem at hand. By carefully

selecting a subset of informative and relevant features, feature

selection can significantly enhance the performance and

interpretability of machine learning models.

D. Feature Scaling

Feature scaling is a critical step in machine learning that

involves transforming raw data into a consistent and

comparable scale. It is especially crucial for specific

algorithms, including support vector machines (SVM) and k-

nearest neighbors (KNN), which are sensitive to the scale of the

data [6]. Feature scaling helps normalize the data, making it

easier for these algorithms to process and interpret.

One commonly used feature scaling technique is Min-Max

Scaling. This method scales the features to a range between 0

and 1 by subtracting the minimum value from each data point

and dividing the result by the difference between the maximum

and minimum values. Min-Max Scaling ensures that all

http://jtipublishing.com/jti

Volume 1 Issue 4, November-December 2020

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

http://jtipublishing.com/jti

features are within the same range, allowing for easier

comparison and interpretation.

Another popular feature scaling technique is StandardScaler.

In contrast to Min-Max Scaling, StandardScaler scales the

features to have a mean of 0 and a standard deviation of 1. This

transformation assumes that the data is normally distributed,

which is not always the case in real-world scenarios. However,

StandardScaler often performs well in practice and is widely

used in machine learning.

Applying feature scaling to data offers several benefits.

Firstly, it helps to mitigate the impact of outliers, as extreme

values are brought closer to the mean. Secondly, it improves

the convergence of machine learning algorithms, making them

more efficient in finding optimal solutions. Thirdly, feature

scaling enhances the interpretability of the model, as the

features are now on a comparable scale and their coefficients

can be directly compared.

By incorporating feature scaling as a preprocessing step,

machine learning models can focus on the relationships

between features, rather than being influenced by the scale of

the data. This leads to improved performance, enhanced

interpretability, and more robust models.

E. Handling Categorical Features

Categorical features are a common challenge in machine

learning, as most algorithms require numeric data for

processing. Handling categorical features effectively is crucial

to ensure accurate and meaningful results from models.

One approach to handling categorical features is One-Hot

Encoding. This technique creates a new binary column for each

unique category within a feature. For example, if a feature

represents the color of a car, One-Hot Encoding would create

three binary columns for "red," "blue," and "green." The

presence of a category is indicated by a value of 1, while its

absence is denoted by a value of 0. This approach is

straightforward and preserves the relationship between

different categories. However, it can lead to a large number of

columns, especially when there are many unique categories [7].

Another technique for handling categorical features is Label

Encoding. Unlike One-Hot Encoding, Label Encoding assigns

a unique integer to each category. For example, the color "red"

might be assigned the integer 1, "blue" the integer 2, and

"green" the integer 3. This approach is more compact than One-

Hot Encoding, as it requires only one column to represent the

feature. However, it assumes that the categories have an

inherent order, which may not always be the case.

More advanced methods for handling categorical features

include Target Encoding. This technique replaces the

categories with the mean of the target variable for each

category. For example, if the target variable is the price of a car,

Target Encoding would replace the color "red" with the average

price of cars that are red. This approach can capture more

complex relationships between features and the target variable,

leading to improved model performance. However, it requires

more computational resources and can be sensitive to outliers

in the data.

III. MODEL SELECTION METHODS

Choosing the right model is crucial for achieving high

performance in machine learning tasks. Several model selection

strategies are discussed in next sections.

A. Cross-Validation

Cross-validation is a robust and commonly employed

technique for assessing the generalization capability of

machine learning models. At its core, it entails partitioning the

available dataset into k subsets, termed folds. The crux of the

method lies in training the model on k-1 folds and evaluating

its performance on the remaining fold. This iterative process is

repeated k times, with each fold serving as the validation set

precisely once. This systematic approach guarantees that the

entire dataset is utilized for both training and validation, leading

to a thorough evaluation of the model's behavior.

Cross-validation plays a pivotal role in mitigating

overfitting, a phenomenon where a model exhibits exceptional

performance on the training data but falters when confronted

with unseen data [1]. By gauging the model's performance on

multiple, independent subsets of the dataset, cross-validation

provides a more reliable estimate of its generalization ability.

Furthermore, it facilitates the selection of the most suitable

model for a given problem.

The utility of cross-validation extends beyond model

evaluation. It also serves as a valuable tool for comparing

different models, tuning hyperparameters, and assessing the

relevance of feature sets. By systematically evaluating various

configurations and options, data scientists gain valuable

insights that guide their decision-making during the model

selection and optimization process.

B. Hyperparameter Tuning

Hyperparameter tuning plays a pivotal role in machine

learning, as it involves optimizing the parameters that govern

the learning process of a model to enhance its performance.

There are various methods for hyperparameter tuning, each

with its own strengths and weaknesses.

One commonly used method is Grid Search, which

exhaustively searches over a specified parameter grid. This

approach ensures that all possible combinations of

hyperparameters are evaluated, but it can be computationally

expensive, especially for models with a large number of

hyperparameters.

Another popular method is Random Search, which samples

parameter combinations randomly from a specified range.

While Random Search is less computationally intensive than

Grid Search, it may not be as effective in finding the optimal

hyperparameters.

Bayesian Optimization is a more sophisticated approach to

hyperparameter tuning. It builds a probabilistic model of the

objective function, which represents the performance of the

model as a function of the hyperparameters. Bayesian

Optimization then uses this model to select the most promising

http://jtipublishing.com/jti

Volume 1 Issue 4, November-December 2020

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

http://jtipublishing.com/jti

hyperparameters for evaluation, making it an efficient and

effective method for optimizing model performance.

Effective hyperparameter tuning can significantly improve

the accuracy and robustness of a machine learning model. By

optimizing the hyperparameters, it is possible to reduce

overfitting, improve generalization, and enhance the overall

performance of the model on unseen data.

C. Ensemble Methods

Ensemble methods are a powerful tool for improving the

performance of machine learning models. By combining the

predictions of multiple models, ensemble methods can reduce

variance, improve accuracy, and make more robust predictions.

Three common ensemble methods are Bagging, Boosting, and

Stacking.

Bagging (Bootstrap Aggregating) involves training multiple

instances of the same model on different subsets of the data.

The predictions from these models are then averaged to

produce a final prediction. Bagging reduces variance by

averaging out the errors of the individual models. It is

particularly effective when the base models are unstable,

meaning that they are sensitive to small changes in the data.

Boosting is another ensemble method that involves training

multiple models sequentially. Each model is trained on a

weighted version of the data, with the weights adjusted based

on the performance of the previous models. The goal of

boosting is to create a sequence of models that are increasingly

accurate. Boosting is particularly effective when the base

models are correlated, meaning that they make similar errors.

Stacking is an ensemble method that involves training a

meta-model to combine the predictions of several base models.

The base models are typically trained on different subsets of the

data or using different algorithms. The meta-model is then

trained to predict the final output based on the predictions of

the base models. Stacking can be more accurate than Bagging

or Boosting when the base models are diverse, meaning that

they make different errors.

Ensemble methods have been shown to outperform single

models significantly in a variety of tasks, including

classification, regression, and clustering. They are particularly

useful when the data is noisy, high-dimensional, or nonlinear.

D. Model Evaluation Metrics

Evaluating the performance of machine learning models is a

crucial step in the development and deployment process. To do

this effectively, it's essential to select appropriate evaluation

metrics that provide insights into different aspects of the

model's behavior. Some commonly used metrics include

accuracy, precision, recall, F1-score, and the Area Under the

Receiver Operating Characteristic Curve (AUC-ROC) [2], [7].

Accuracy measures the overall correctness of the model's

predictions, but it can be misleading in certain scenarios. For

example, a model that always predicts the majority class will

have high accuracy even if it fails to identify the minority class

correctly. Precision, on the other hand, measures the proportion

of positive predictions that are correct, providing information

about the model's ability to avoid false positives. Recall, also

known as sensitivity or the true positive rate, measures the

proportion of actual positive instances that are correctly

identified, giving insights into the model's ability to detect true

positives.

The F1-score combines precision and recall into a single

metric, offering a balanced evaluation of the model's

performance. It considers both false positives and false

negatives, making it suitable for scenarios where both types of

errors are equally important. Additionally, the AUC-ROC

curve provides a comprehensive view of the model's

performance across all possible classification thresholds. It

measures the ability of the model to distinguish between

positive and negative instances and is particularly useful when

the dataset exhibits imbalanced class distributions.

Selecting a suitable set of evaluation metrics is crucial for

assessing the model's performance comprehensively. By

considering multiple metrics, data scientists can gain a deeper

understanding of the model's strengths and weaknesses,

enabling them to make informed decisions about model

selection and tuning.

IV. CONCLUSION

Feature engineering and model selection are indispensable

for building high-performing machine learning models. Our

analysis highlights the effectiveness of various techniques in

enhancing model accuracy and efficiency. By systematically

applying data cleaning, feature creation, selection, and scaling,

we can significantly improve the quality of input data, leading

to better model performance. Furthermore, strategic model

selection and hyperparameter tuning ensure that the chosen

models are well-suited to the task, maximizing their predictive

power.

Future work will explore automated feature engineering and

model selection methods to further streamline the model

development process. Advances in AutoML and

hyperparameter optimization techniques hold promise for

making these processes more efficient and accessible, allowing

practitioners to focus on higher-level aspects of machine

learning model development. Additionally, exploring the

integration of domain knowledge into feature engineering

processes can further enhance the relevance and predictive

power of the generated features.

REFERENCES

[1] Dietterich, Thomas G.. “Approximate Statistical Tests for

Comparing Supervised Classification Learning

Algorithms.” Neural Computation 10 (1998): 1895-1923.

[2] Saito, Takaya and Marc Rehmsmeier. “The Precision-

Recall Plot Is More Informative than the ROC Plot When

Evaluating Binary Classifiers on Imbalanced Datasets.”

PLoS ONE 10 (2015).

[3] Heaton, Jeff. “An empirical analysis of feature

engineering for predictive modeling.” SoutheastCon

(2016): 1-6.

http://jtipublishing.com/jti

Volume 1 Issue 4, November-December 2020

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

http://jtipublishing.com/jti

[4] Nargesian, Fatemeh, Horst Samulowitz, Udayan

Khurana, Elias Boutros Khalil and Deepak S. Turaga.

“Learning Feature Engineering for Classification.”

International Joint Conference on Artificial Intelligence

(2017).

[5] Li, Jundong, Kewei Cheng, Suhang Wang, Fred

Morstatter, Robert P. Trevino, Jiliang Tang, and Huan

Liu. “Feature Selection: A Data Perspective.” ACM

Computing Surveys (2017) 50 (6): 94.

[6] Uddin, Muhammad Fahim, JeongKyu Lee, Syed Sajjad

Hussain Rizvi and Samir E. Hamada. “Proposing

Enhanced Feature Engineering and a Selection Model for

Machine Learning Processes.” Applied Sciences 8 (2018):

646.

[7] Roe, Kenneth D, Vibhu Jawa, Xiaohan Tanner Zhang,

Christopher G. Chute, Jeremy A. Epstein, Jordan K.

Matelsky, Ilya Shpitser and Casey Overby Taylor.

“Feature engineering with clinical expert knowledge: A

case study assessment of machine learning model

complexity and performance.” PLoS ONE 15 (2020).

http://jtipublishing.com/jti

