
 North American Journal of Engineering and Research

 Est. 2020

Volume 1 Issue 4, October-December 2020

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

Deploy a Microservice Application using

Docker Compose
Pallavi Priya Patharlagadda

Email:

pallavipriya527.p@gmail.com

Abstract
The deployment of microservices as Docker containers is examined in this paper. Kubernetes pods are used to deploy the

containers after they have been orchestrated using Docker compose and Docker swarm. We go over how these technologies

make microservices architectures scalable and easy to deploy. We illustrate the advantages of using these tools in

contemporary software development with real-world examples and insights. By leveraging Docker for containerization and

Docker Compose for the management of multi-container applications, our investigation demonstrates how these tools can be

used to create microservice architectures that are resilient, scalable, and Flexible

Introduction

The evolution from monolithic applications to microservices
reflects a shift in software architecture towards a more
modular and scalable approach. Microservices are tiny,
autonomous components that provide a single, clearly defined
functionality. The microservices architecture gave developers
the flexibility to write applications in their language of choice.
On the other hand, containerization complemented this by
packaging the dependencies so that the microservices could
be deployed across any environment.

The concept of containers started with Linux containers.
Linux Containers is an operating-system-level virtualization
method for running multiple isolated Linux systems on a
control host using a single Linux kernel. Docker is a tool that
is used to automate the deployment of applications in
containers so that applications can work efficiently in
different environments in isolation. The isolation is achieved
using Linux namespaces and Cgroups.

Docker Compose is a tool for defining and running multi-
container applications. It allows you to define and manage
multi-container applications in a single YAML file. This
simplifies the complex task of orchestrating and coordinating
various services, making it easier to manage and replicate
your application environment.

Architecture:
Docker:

Docker is a tool that provides the ability to package and run
an application in a loosely isolated environment called a
container. The isolation and security that containment
provides let you run many containers simultaneously on a
given host. Containers are lightweight and contain everything
needed to run the application.

Docker provides a platform to manage the lifecycle of your
containers. Develop your application and its supporting
components using containers. Deploy the application into a
production environment, either as a container or an
orchestrated service. This works the same whether your
production environment is a local data center, a cloud
provider, or a hybrid of the two.

Docker architecture:

The Docker client:

The Docker client (docker) is the frontend and primary way
that Docker users interact with Docker. When docker
commands such as docker run or docker build are executed,
the client sends these commands to dockerd using the Docker
API, which then performs the specified functionality. The
Docker client can communicate with more than one daemon.

A. The Docker daemon:

The Docker daemon (dockerd) listens to Docker API requests
and manages Docker objects such as images, containers,

https://najer.org/najer

Volume 1 Issue 4, October-December 2020

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

networks, and volumes. A daemon can communicate with
other daemons to manage Docker services.

The Docker registries:

The Docker registry is the place where Docker images are
stored. Docker Hub is a public registry, and Docker looks for
images on Docker Hub by default. The user can create a
private registry. Once the Docker registry is configured,
Docker tries to pull/push the required images from/to the
configured registry.

Docker Objects:

Docker objects are images, containers, networks, volumes,
plugins, and others.

There are a lot of images in the Docker Hub. The user can
either pull an existing image from Dockerhub or create their
own image by writing a Docker file. Docker file is nothing but
a text file that takes a base image, installs the dependencies,
copies the application, and executes the application. Docker
build on the Dockerfile would create a Docker image. Docker
run would create a container from the provided image.

Docker Desktop:

Docker Desktop provides the GUI for managing images,
containers, and applications directly on your machine. This is
very user friendly for the developers.

From the Dev Environments, we can create a sample project
in the Docker Desktop. I will demonstrate this by using below
Dockerfile.

Consider below Dockerfile:

FROM golang:1.21

WORKDIR /src

COPY <<EOF ./main.go

package main

import "fmt"

func main() {

 for {

 fmt.Println("hello, Docker")

 }

}

EOF

RUN go build -o /bin/hello./main.go

CMD ["/bin/hello"]

The Dockerfile performs the below actions.

1. Pulling the Docker base image golang:1.21 from

Dockerhub repository.

2. Setting the current work directory on the container to /src

3. Copy main.go file to the current directory.

4. Build the main.go and save the generated binary as

/bin/hello

5. Execute the binary on the container.

Build a Docker image using:

 docker build -t hello-docker -f Dockerfile.

On successful Docker build, Docker image will be created.

Let’s check in the Docker Desktop.

By clicking on the image, it would provide information on
Layers, Image Hierarchy, etc.

Let’s navigate to the containers tab on the left panel and try to
run the container from the image.

https://najer.org/najer

Volume 1 Issue 4, October-December 2020

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

Docker Desktop allows us to provide arguments like
container, volume, and environment variables. I just provided
the container name. On running it, a new container will be
created, which will take you to the logs page of the container.

Here we can see the other options, like inspecting the
container, bind mounts, executing commands inside the
container, filesystem, and the statistics that display the CPU,
memory, disk, and I/O usage.

If your application is tiny and requires just one container, then
a Docker container is sufficient. But if the application contains
multiple docker containers, then it would be difficult to
manage all these docker containers individually. In that case,
Using Docker compose would make deployment easy.

Docker Compose:

Docker Compose is a tool for defining and running multi-

container applications. Docker Compose uses a single

comprehensible YAML configuration file to define services,

networks, volumes, configs, secrets required by applications.

This helps in creating and starting all the services from your

configuration file with a single command. Below is the

sequence of actions to be performed .rite Dockerfiles and

build images.

 .Create stacks (consisting of individual containers/services)

using the Dockerfile images defined in docker-compose.yml.

 .Deploy the entire application using docker-compose

command

Docker compose have different top-level elements like

services, networks, volumes, configs, secrets, etc. sample

Services:

A service is an abstract definition of a computing resource

within an application which can be scaled or replaced

independently from other components. Services are backed

by a set of containers, run by the platform according to

replication requirements and placement constraints. As

services are backed by containers, they are defined by a

Docker image and set of runtime arguments. All containers

within a service are identically created with these arguments.

For services, each service may also include a build section,

which defines how to create the Docker image for the

service. Compose supports building docker images using this

service definition. If not used, the build section is ignored,

and the compose file is still considered valid.

services:

 frontend:

 image: busybox

 backend:

 image: python

Networks:

Networks let services communicate with each other.

Compose sets a default single network for the application.

Each container for a service joins the default network, is

reachable by other containers on that network, and is

discoverable by the service's name.

The top-level networks element lets you configure named

networks that can be reused across multiple services. To use

a network across multiple services, an explicit grant should

be provided for each service by using network attribute

within the services top-level element.

services:

 frontend:

https://najer.org/najer

Volume 1 Issue 4, October-December 2020

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

 image: example/webapp

 networks:

 - front-net

 - back-net

networks:

 front-net:

 back-net:

Volumes:

Volumes are persistent data stores implemented by the

container engine. Compose allows services to mount

volumes, and configuration parameters to allocate them to

infrastructure. The top-level volumes declaration lets you

configure named volumes that can be reused across multiple

services.

Like Networks, to use a volume across multiple services, one

must explicitly grant each service access by using the

volumes attribute within the services top-level element. The

volumes attribute has additional syntax that provides more

granular control.

services:

 backend:

 image: example/database

 volumes:

 - db-data:/etc/data

 backup:

 image: backup-service

 volumes:

 - db-data:/var/lib/backup/data

volumes:

 db-data:

Configs:

Configs let services adapt their behavior without rebuilding a

Docker image. Configs are mounted as files in container's

filesystem. The location of the mount point within the

container defaults to /<config-name> in Linux containers

and C:\<config-name> in Windows containers. Services can

only access configs when explicitly granted by a configs

attribute within the services top-level element. The top-level

configs declaration defines or references configuration data

that is granted to services in your Compose application. The

source of the config is either a file or external. Below is a

sample reference where config is a file.

configs:

 http_config:

 file: ./httpd.conf

<project_name>_http_config is created when the application

is deployed, by registering the content of the httpd.conf as

the configuration data.

Secrets:

Secrets are similar to Configs used for sensitive data, with

specific constraint for this usage.

Services can only access secrets when explicitly granted by a

secrets attribute within the services top-level element. The

top-level secrets declaration defines or references sensitive

data that is granted to the services in a Compose application.

The source of the secret is either file or environment.

Below is an example.

secrets:

 server-certificate:

 file: ./server.cert

server-certificate secret is created as <project_name>_server-

certificate when the application is deployed, by registering

content of the server.cert as a platform secret.

Deploying an application using Docker compose:

I created a sample project where I have three containers

nginx as the frontend container.

A mysql container as DB container

A Golang backend container that writes data to the database.

Once the data is written, I should be able to see the data in

the browser and as well as curl output. Below is the sample

compose file used.

services:

 backend:

 build:

 context: backend

 target: development

 secrets:

 - db-password

https://najer.org/najer

Volume 1 Issue 4, October-December 2020

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

 depends_on:

 - db

 db:

 image: mariadb

 restart: always

 healthcheck:

 test: ["CMD", "mysqladmin", "ping", "-h", "127.0.0.1",

"--silent"]

 interval: 3s

 retries: 5

 start_period: 30s

 secrets:

 - db-password

 volumes:

 - db-data:/var/lib/mysql

 environment:

 - MYSQL_DATABASE=example

 - MYSQL_ROOT_PASSWORD_FILE=/run/secrets/db-

password

 expose:

 - 3306

 frontend:

 build: frontend

 ports:

 - 8080:80

 depends_on:

 - backend

volumes:

 db-data:

secrets:

 db-password:

 file: db/password.txt

From Docker Desktop, in the “Dev Environments” tab, we

can provide a GitHub URL or a local directory. In my case, I

provided my local folder.

Docker Desktop would look for the compose file in the
directory and start deploying the application.

Once Deployed, we can see the project running.

We can go through the containers tab and see the logs of the
container or exec to the container and issue a command, etc.
To verify if the application is running, I gave the URL in the
browser and was able to see the Hello messages written from
Golang backend container to the database.

So, the application is up and running. We can also deploy the
application from cli using the below command.

https://najer.org/najer

Volume 1 Issue 4, October-December 2020

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

docker-compose -f docker-compose.yaml up

Curl on the other terminal would display the hello messages
written.

Command to use to stop the application:

 docker compose stop

Command to stop and remove the application containers:

 docker compose down

Conclusion:

 Docker and Docker compose are very helpful for deploying
container applications. Docker Desktop is very useful for
developers during initial deployment, as we can watch logs,
inspect the container, execute commands inside the container,
Monitor the CPU and RAM utilization, etc. Docker Desktop
reduces the time spent on complex setups so you can focus on

writing code. It takes care of port mappings, file system
concerns, and other default settings.

References:

https://docs.docker.com/guides/docker-
overview/#docker-architecture

https://docs.docker.com/compose/

 https://docs.docker.com/desktop/

https://najer.org/najer

