
North American Journal of Engineering and Research

Est. 2020

Volume 3 Issue 3, July – September 2022

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
https://najer.org/najer

Unleashing the Power of Docker and Kubernetes for

Databases
Balakrishna Boddu

Email: balakrishnasvkbs@gmail.com

Abstract

Current database systems are more complex Nowadays and demanding efficient management and scalability. Docker and

Kubernetes, powerful tools for containerization and orchestration, offer a robust solution. This Paper will explore how Docker

and Kubernetes can revolutionize database deployment, management, and scaling. We will deep dive into key concepts, best

practices, and real-world use cases to demonstrate the significant benefits of adopting these technologies. By the end, attendees

will have a clear understanding of how to leverage Docker and Kubernetes to optimize their database infrastructure and achieve

unparalleled performance, reliability, and flexibility

Keywords: Keys, containers, Kubernetes, Dockers, secrets, pods, replication, Builds, Scalability, Resilience.

Introduction
If you’re new to containers, you’ve probably heard of

Kubernetes and Docker but might not be sure about the

difference between them. While they share some similarities,

they also have unique features. This article will compare

Kubernetes and Docker, highlighting their advantages.

In today’s fast-paced tech world, databases are crucial for

running applications and storing important data. However,

managing these databases can be complex and resource-

intensive. To tackle these challenges, many organizations are

turning to containerization and orchestration technologies.

Docker and Kubernetes are two leading tools in this field,

offering new ways to deploy, manage, and scale databases.

Docker packages applications and their dependencies into

lightweight, portable containers, while Kubernetes handles

the deployment, scaling, and management of these containers

across clusters.

We’ll explore how Docker and Kubernetes can transform

database infrastructure. We’ll cover key concepts, best

practices, and real-world examples to show the significant

benefits of using these technologies. By the end, you’ll

understand how to use Docker and Kubernetes to optimize

your database environments for better performance,

reliability, and flexibility.

The rapid evolution of cloud computing and the increasing

demand for scalable, reliable, and efficient applications have

led to a surge in the adoption of containerization technologies.

Docker, a popular containerization platform, and Kubernetes,

a container orchestration system, have emerged as powerful

tools for modernizing application development and

deployment. This paper explores the transformative impact of

Docker and Kubernetes on database management,

highlighting how these technologies can revolutionize the

way organizations deploy, scale, and manage their databases.

We will delve into the key benefits of containerizing

databases, including improved portability, scalability, and

resilience, as well as the challenges and best practices that

must be considered for successful implementation.

Research Work
Docker is a tool that helps developers create, run, and manage

applications in isolated environments called containers. It

makes it easier to deliver applications by separating them

from the underlying infrastructure. Docker's approach to

quickly building, testing, and deploying code helps reduce the

time between writing code and using it in production.

Diagram: Docker Containers

https://najer.org/najer

Volume 3 Issue 3, July – September 2022

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
https://najer.org/najer

Kubernetes is a system that manages containers. It uses a

client-server structure, with a control center that oversees the

system and a group of machines that run the containers. The

control center has several parts, like the API server, etc,

scheduler, and controller manager. These parts work together

to manage the life cycle of applications running on

Kubernetes. Kubernetes organizes containers into groups

called "pods." Pods can have one or more containers working

together. They allow related containers to be grouped and

share things like networks and storage. Kubernetes also uses

a simple and scalable way to define the system's desired state.

This lets users specify their applications' configuration and

deployment requirements.

Diagram: Kubernetes Arch

In recent years, managing databases has changed from using

traditional relational databases on large, single systems to

cloud-based, distributed environments. With the rise of

microservices and containers, modern databases need to

easily fit into more complex and dynamic systems, which

requires advanced solutions to handle scaling, performance,

and flexibility. For large companies working in these

environments, managing databases at scale can be tough.

Organizations with a lot of data often face challenges like

keeping databases highly available, planning for disaster

recovery, and scaling resources efficiently. To solve these

problems, many companies use a hybrid approach, combining

their infrastructure with cloud resources to meet different

needs. One major outcome of this hybrid model is a shift

toward standardization. By combining different components,

including databases, onto one platform, companies aim to

simplify operations and create more consistency across their

environments, making their overall management more

efficient.

Imagine Kubernetes as a helpful tool for managing many

different applications. As more and more companies use

Kubernetes, they're also starting to use it for databases. At

first, people weren't sure if Kubernetes was a good fit for

databases. But now, Kubernetes is better, and people have

created tools and rules to help it work with databases.

For engineers who manage these tools, Kubernetes is a strong

base for building their database management tools. This lets

them create custom solutions that fit the needs of their specific

company, like automatically creating new databases and

connecting them to other tools.

Methodology

Imagine Kubernetes as a helpful tool for managing many

different applications. We want to find out how well

Kubernetes works for managing databases, which are special

kinds of applications that store data.

We have two main questions:

1. How good is Kubernetes at doing what databases need?

2. How do different databases work when they're used with

Kubernetes, and how does this affect how fast they work and

how much they use?

To answer these questions, we will do some experiments.

We'll set up different databases using Kubernetes and try

things like making backups, updating them, and changing

their size. We'll also measure how well the databases and the

things that use them work, and how much they use. These

measurements will help us answer our questions.

MySQL Setup with Kubernetes
MySQL is a very popular Database for storing and organizing

data. It uses a special language called SQL to find and change

information. MySQL is good at keeping data consistent.

While it's usually used for storing data in a specific way, it can

also be used as a more flexible tool for storing data in different

formats. There are a few ways to make MySQL work faster

and handle more data. One way is to divide it into smaller

parts and spread these parts across different computers. This

is called sharding. Another way is to make copies of the

database. One copy is the main one, and the others are like

backups. The main copy handles all the changes, and these

changes are sent to the backups. You can also use the backups

to read data, which makes the database faster.

Diagram: Replication setup between Master to Slave

This section describes a tool that helps manage MySQL

databases in a way that keeps them available even if

there are problems. The tool is called an operator, and it

uses a specific version of MySQL called Persona Server

for MySQL.

Here are some key points about the operator:

High Availability: It creates clusters with multiple

database servers to ensure data is still accessible if one

server fails.

Replication: It uses a technique called asynchronous

master-slave replication, where one server is the main

copy (master) and the others are backups (slaves).

Changes are made to the master and then copied to the

slaves.

Monitoring: Each database server has built-in tools that

allow it to be easily monitored.

Backups: The operator can create regular backups of the

database, but these backups can only be stored in

https://najer.org/najer

Volume 3 Issue 3, July – September 2022

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
https://najer.org/najer

specific cloud storage services like Google Cloud

Storage or Amazon S3.

Restore: Clusters can also be recreated from these

backups if needed.

Figure 4 shows a high-level overview of what the

operator and a MySQL cluster look like. The operator

itself consists of two parts: the operator program and

another tool called Orchestrator (which helps manage

the database copies).

The MySQL cluster itself is a group of pods (containers)

that work together. Each pod has several containers:

Blue containers (Init): These containers run only once

when a pod is first started. They set up the database

configuration and can restore a database from a backup

if needed.

Green containers: These containers run all the time.

The main green container is the Persona MySQL server

itself. The other green containers are helper programs

that provide functions like backups, monitoring data,

and keeping the database copies.

Diagram: High-level overview of pods deployed by the operator, and

containers that run within a pod in a MySQL cluster

When you use Docker and Kubernetes together, Kubernetes

controls the Docker containers. This means Kubernetes can

manage and automate how Docker containers are started,

scaled, and run.

Kubernetes can create and manage Docker containers, decide

where they should run in a group of computers, and

automatically change the number of containers based on how

many are needed. It can also manage how Docker containers

store data and connect, making it easier to create and run

complex applications.

By using Docker and Kubernetes together, you can get the

benefits of both tools. Docker makes it easy to create and

package applications in containers, while Kubernetes

provides a powerful platform to manage and scale these

applications. Together, they provide a complete solution for

managing applications in containers at a large scale.

Analysis and benefits

Let’s discuss where and when to use Docker and Kubernetes

in an organization so that it can benefit.

There are more benefits when it comes to Kubernetes and

listed down;

Standardization: Kubernetes provides a unified platform for

managing databases and applications across on-premises and

cloud environments.

Self-service: Developers and teams can provision and

manage databases through self-service, streamlining

operations.

Scalability: Kubernetes supports elastic scaling, allowing

databases to handle varying workloads seamlessly.

Resilience: Built-in features like failover and recovery

increase the reliability of databases running on Kubernetes.

Complications and governance
By addressing these complications and implementing

effective governance measures, organizations can

successfully leverage Docker and Kubernetes to optimize

their database infrastructure and achieve their business

objectives.

Complications

Statefulness: Databases are inherently stateful, requiring

careful consideration of data persistence, volume

management, and backups.

Performance optimization: Ensuring optimal performance

in containerized environments can be challenging, especially

for demanding database workloads.

Security: Protecting database data and preventing

unauthorized access is crucial, requiring robust security

measures.

Network considerations: Proper network configuration is

essential for database connectivity and performance.

Monitoring and troubleshooting: Effective monitoring and

troubleshooting tools are necessary to identify and address

issues promptly.

Governance

https://najer.org/najer

Volume 3 Issue 3, July – September 2022

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
https://najer.org/najer

Standardization: Establishing standardized guidelines and

templates for database deployments can streamline operations

and improve consistency.

Access control: Implementing strong access controls to

protect sensitive database data is essential.

Backup and recovery: Implementing regular backup and

recovery procedures is crucial for data protection and disaster

recovery.

Performance monitoring: Continuous monitoring of

database performance is essential for identifying and

addressing potential issues.

Security audits: Regular security audits can help identify and

address vulnerabilities.

Documentations and Knowledge Sharing
organizations can ensure that their team members have the

necessary knowledge and skills to effectively leverage Docker

and Kubernetes for database management. This will

ultimately lead to improved efficiency, scalability, and

reliability of database operations.

Internal Documentation

Database deployment guidelines: Create detailed guidelines

for deploying various databases (MySQL, PostgreSQL,

MongoDB, etc.) on Kubernetes.

Best practices: Document best practices for containerizing

databases, including data persistence, network configuration,

and security.

Troubleshooting guide: Provide a comprehensive

troubleshooting guide for common issues related to database

deployments on Kubernetes.

Monitoring and alerting: Document monitoring and alerting

procedures to ensure timely detection and resolution of

problems.

External Documentation

Kubernetes documentation: Leverage the official

Kubernetes documentation for detailed information on

concepts, best practices, and troubleshooting.

Database-specific documentation: Refer to the

documentation for the specific databases being used on

Kubernetes.

Community forums and blogs: Participate in online

communities and forums to learn from others' experiences and

stay updated on the latest trends.

Knowledge Sharing

Internal workshops and training: Conduct regular

workshops and training sessions to educate team members on

Docker and Kubernetes best practices.

Knowledge base: Create a centralized knowledge base to

store and share information related to database deployments

on Kubernetes.

Cross-functional collaboration: Foster collaboration

between database administrators, DevOps engineers, and

application developers to share knowledge and best practices.

External conferences and meetups: Attend industry

conferences and meetups to learn about new trends and best

practices.

Conclusion
Docker is a tool that helps create and run containers, while

Kubernetes is a tool that manages many containers at once.

Docker is simpler and easier to use, while Kubernetes has

more features for managing large and complex groups of

containers.

When choosing between Docker and Kubernetes, consider the

size of your project, your team's experience with each tool,

and how much control you need. Both tools have advantages

and disadvantages, and the right choice depends on your

specific needs. For smaller projects or teams with less

experience, Docker is a good option. However, for larger,

more complex projects that need a lot of container

management, Kubernetes is a more powerful and flexible tool.

It's important to carefully evaluate your needs and consider

the pros and cons of each tool before making a decision.

Reference

[1] Docker Deep Dive by Nigel Poulton (Focuses on Docker

fundamentals)

[2] Kubernetes: Up and Running by Kelsey Hightower

(Comprehensive guide to Kubernetes)

[3] Designing Data-Intensive Applications by Martin

Kleppmann (Discusses database design in containerized

environments)

[4] High-Performance MySQL: Optimization, Backup,

Replication, and More by Baron Schwartz, Peter Zaitsev,

and Vadim Tkachenko (Optimizing database

performance in containerized environments)

[5] Docker Blog: https://www.docker.com/blog/

[6] Kubernetes Blog: https://kubernetes.io/blog/

[7] Cloud Native Computing Foundation (CNCF) Blog:

https://www.cncf.io/blog/

[8] Platform9 Blog: https://platform9.com/blog/ (Focuses on

the container and Kubernetes management)

[9] 9.DataStax Blog: https://www.datastax.com/blog

(Focuses on containerized database solutions)

[10] Docker Documentation: https://docs.docker.com/

[11] Kubernetes Documentation:

https://kubernetes.io/docs/home/

[12] CNCF Landscape: https://landscape.cncf.io/ (Visualizes

container technologies)

https://najer.org/najer
https://www.docker.com/blog/
https://kubernetes.io/blog/
https://www.cncf.io/blog/
https://platform9.com/blog/
https://www.datastax.com/blog
https://docs.docker.com/
https://kubernetes.io/docs/home/
https://landscape.cncf.io/

