
North American Journal of Engineering and Research

Est. 2020

Volume 3 Issue 2, April – June 2022

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

A Novel Approach for Efficient Conversion

Tracking in Mobile Applications: Leveraging Event

Linking and Beacon Events

Sambu Patach Arrojula

Email: sambunikhila@gmail.com

Abstract

In the context of analytics, determining the source of a conversion, such as a user registration or product purchase, is a critical

yet challenging task. Applications typically have multiple entry points leading to these important actions, such as various ads

or UI elements. Product owners seek to identify which entry points are most effective in driving conversions. Traditionally,

applications track these entry points through complex event instrumentation that propagates data from screen to screen, resulting

in high maintenance overhead and increased potential for errors. In this paper, we propose a novel design that simplifies event

instrumentation while efficiently determining the source entry points for conversions. We demonstrate how this design can be

implemented on both the client side and the backend, ensuring robust conversion tracking through analytic events.

Keywords: Mobile application, analytic events, Conversion tracking, Event linking, User journey, Analytic cache.

Introduction

Conversion tracking is a key component of analytics in mobile

applications, particularly for critical user actions such as

registrations and purchases. Application owners would like to

track and know about the entry points that are driving most of

these important conversions. These applications often have

multiple pathways leading to the same conversion point,

making it challenging to accurately track the source of a

conversion. For instance, in scenarios where a conversion can

occur through different sequences of screens e.g.,

A→B→C→M and X→Y→Z→M where M is a conversion

event, it becomes essential to identify whether the conversion

originated from path A or X.

Traditional approaches involve embedding detailed tracking

information in each UI element, which must be propagated

throughout the application. This method is not only complex

and prone to errors but also rigid, as it relies on pre-compiled

data that cannot be easily modified or extended. For example,

when paths A→B→C→D and E→B→C→D share common

elements B and C, the complexity of the instrumentation B &

C increases significantly, leading to maintenance challenges

and a higher likelihood of bugs.

This paper presents a new approach that leverages client-side

caching and event linking to efficiently trace the origin of

conversions. By maintaining a logical sequence of events in

the client’s analytics cache, we can backtrack through user

actions to determine the source of any conversion event. This

approach not only simplifies the instrumentation process but

also enhances flexibility, allowing for the dynamic retrieval of

additional information even after the event has occurred.

Approch

In this solution we assume the presence of an analytics

framework on the client side that incorporates a caching

mechanism. This caching system allows for events to be

temporarily stored and processed locally before being

uploaded to the backend in batches, rather than being

transmitted immediately as they occur. This approach is

beneficial in several ways, including reducing network usage,

improving performance, and allowing for more sophisticated

processing of events before they are sent to the server. By

leveraging this caching component, we can implement more

complex event handling strategies that would not be feasible

in a real-time upload scenario.

 UI Entry for

Registration

User details

screen
Terms &

conditions
User

registered

Ad click

landing page

prefilled info

Terms &

Conditions

Example of a user journey for registration with two entry points

https://najer.org/najer

Volume 3 Issue 2, April – June 2022

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

Our approach centers on the concept of linking analytics

events in a chronological sequence within the client’s cache.

When an event is fired, it is not treated as an isolated

occurrence; instead, it is linked to the event that immediately

preceded it. This chronological linking creates a logical chain

of events that reflects the user’s journey through the

application. By maintaining this chain, the system can

backtrack through the sequence of events to identify specific

points of interest, such as the origin of a conversion event.

This linking mechanism is key to our solution, as it eliminates

the need for complex and error-prone instrumentation across

multiple screens or steps within the application.

In addition to chronological linking, our approach relies on the

application to instrument beacon events at critical checkpoints

within the user’s journey. These beacon events serve as

markers or reference points that denote potential conversion

paths. When a conversion event occurs, the system can trace

back through the linked events to locate the corresponding

beacon event, thereby identifying the source of the

conversion. This method greatly simplifies the

instrumentation process, as intermediate screens or steps do

not require any special handling or the propagation of

information from one event to another. By focusing on beacon

events and chronological linking, we provide a streamlined

and efficient solution for tracking the origins of important

conversion events without the overhead of maintaining

detailed instrumentation across the entire application.

Details

Event Structure

In our proposed solution, each event captured by the

application consists of two main components: application-

specific data and analytics framework metadata. The

application-specific data is designed to be flexible, enabling

the app to fill in key-value pairs that reflect the specific details

of a user interaction, such as the action performed or the

screen viewed. This part of the event structure is

customizable, allowing different applications to tailor the

event data according to their unique requirements. On the

other hand, the analytics framework metadata is standardized,

providing essential contextual information like the timestamp

of the event, device characteristics, operating system details,

and other environment-specific data. This metadata remains

consistent across events, offering a reliable basis for analyzing

user behavior and interactions. To facilitate the backtracking

mechanism central to our solution, the analytics framework

introduces an additional field called prevEvent. This field is

automatically populated by the framework before the event is

added to the cache and contains the identifier of the

immediately preceding event. By including this prevEvent

entry, the framework effectively links each event to its

predecessor, creating a chronological sequence of events. This

linkage allows the system to easily navigate through the user’s

interaction history within the application.

EventName
EventInfo-1
EventInfo-2
…

EventTimestamp
Dev-Serialnum
OS-name
…

prevEventId

Event linking

The analytics framework is responsible for maintaining a

continuous link between events by consistently tracking the

"previous event" as users interact with the application. Each

time a new event is generated, the framework automatically

populates it with the identifier of the existing previous event,

effectively linking the current event to the one that occurred

immediately before it. Once this linkage is established, the

framework updates its internal record, replacing the previous

event with the current one. This process ensures that a

chronological chain of events is maintained, allowing for

seamless backtracking through the user’s interaction history.

When the analytics framework is integrated with multiple

applications on the same client, it manages separate "previous

event" records for each registered application. This means that

events generated by different applications are linked to their

respective preceding events within that specific application's

context. By maintaining these distinct chains, the framework

ensures that each application’s event history remains accurate

and independent, allowing for precise tracking and analysis.

However, in real-world scenarios, there is always a possibility

of bugs or errors on the client side that could disrupt this event

linking process. If such an issue arises and an event becomes

delinked—meaning the expected preceding event is

missing—the framework has a mitigation strategy in place. In

such cases, the backend system is equipped to search for the

next available preceding event from the same client and

application. This search ensures that even if a link is broken,

the overall chain can be restored, minimizing the impact on

the accuracy and reliability of conversion tracking. This

approach provides a robust mechanism for handling potential

errors, ensuring that the event linking process remains

resilient and effective even in the face of unexpected client-

side issues.

S B E E E T C

Track Back E – regular Event

B – Beacon Event

S – Source Event

T – Target Event

C – Conversion Event

https://najer.org/najer

Volume 3 Issue 2, April – June 2022

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

Application

Analytics
Framework

(tracks last event)

Cache

Event + prevEvent

Beacon Event

In the proposed analytics framework, a new event type,

BEACON_EVENT, is introduced to enhance the tracking of

conversion paths. This event is specifically designed to be

emitted by the application whenever it detects that a user has

entered a potential conversion path. The purpose of the

BEACON_EVENT is to serve as a marker that can be

referenced later when the conversion is completed, allowing

the system to trace the conversion back to its starting point

using the event-linking mechanism.

Applications are expected to instrument BEACON_EVENTs

at the entry points of all known conversion paths. For

example, when a user initiates the first action in a conversion

path, such as starting a sign-up process, the application first

emits the regular event corresponding to this action—say, a

SIGN_UP_START event. Immediately following this, the

application emits a BEACON_EVENT that includes the

identifier of the preceding SIGN_UP_START event as well as

the name of the expected end event-name for that conversion

path, such as REGISTRATION_SUCCESS.

EventName: BEACON_EVENT
SourceEventID: <eventid>
TargetEventName: <eventName>

Conversion Event and tracing back

The analytics framework introduces another key event type

called CONVERSION_EVENT, designed to efficiently

identify and log the source of a conversion when it occurs.

When the application detects that a conversion has taken

place—such as when the REGISTRATION_SUCCESS

screen is displayed or a relevant backend response is

received—it first sends a regular event corresponding to this

context. Immediately following this, the application emits a

special CONVERSION_EVENT, which instructs the

analytics framework to initiate a backtracking process within

the corresponding client’s event list.

EventName: CONVERSION_EVENT
SourceEventID: <eventid>
TargetEventID: <eventid>

The CONVERSION_EVENT contains two critical fields:

targetEventId and sourceEventId. The targetEventId is filled

by the application and refers to the event ID of the just-

occurred conversion event. The sourceEventId, on the other

hand, is initially left blank by the application. When the

CONVERSION_EVENT is processed by the analytics

framework or cache, the framework begins a trace-back

operation by reading the name of the conversion event

associated with the targetEventId. It then searches through the

linked sequence of events for a corresponding

BEACON_EVENT that matches this conversion event name

as its target.

Upon finding the appropriate BEACON_EVENT, the

framework retrieves the sourceEventId from it, which

represents the entry point where the user’s journey towards the

conversion began. The analytics framework then populates

this sourceEventId into the CONVERSION_EVENT and

stores it in the cache. This completed event, now containing

both the targetEventId and the sourceEventId, provides a clear

and comprehensive record of the conversion, including both

the outcome and its origin.

When this CONVERSION_EVENT is eventually uploaded to

the backend, it offers precise insights into the conversion

process: it identifies the specific conversion (e.g.,

REGISTERED_USER) along with the details contained in the

targetEventId, and it also pinpoints the source entry point

using the sourceEventId where the user’s journey began.

In cases where the corresponding BEACON_EVENT has

already been uploaded and is no longer available in the local

cache, the CONVERSION_EVENT is stored and uploaded

without a sourceEventId. The backend, upon receiving such

an event, recognizes the missing sourceEventId and performs

the trace-back operation within its database. This backend

process involves searching through the event sequence, event

by event, moving backwards from the targetEventId to find

the relevant BEACON_EVENT and thus determine the

sourceEventId. To avoid excessive computational load, this

backtracking process is limited to a fixed time window, such

as the previous 24 hours of events. This time-bounded search

ensures efficiency while maintaining the accuracy and

reliability of conversion tracking, even in scenarios where the

client’s cache has already been cleared.

Examples

Use Case: Independent Conversion Paths

When an application has independent conversion paths, such

as A -> B and C -> D, the instrumentation process is

https://najer.org/najer

Volume 3 Issue 2, April – June 2022

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

straightforward. The application emits one

BEACON_EVENT at the starting point of each path (i.e., at

points A and C) and a CONVERSION_EVENT at the end of

each path (i.e., at points B and D). When a conversion event

occurs, the analytics framework traces back through the event

sequence to find the corresponding BEACON_EVENT. For

example, when a user completes the conversion at point B, the

framework will trace back to the BEACON_EVENT emitted

at point A, effectively linking the conversion to its origin.

 Ba a

Bb b

Use Case: Single Entry Point with Multiple Conversions

In scenarios where multiple conversions can originate from

the same entry point, such as A -> B and A -> C, the

application must account for all possible conversion paths

from that origin. When the user interacts with the origin point

A, the application emits a regular event for A, followed by

multiple BEACON_EVENTs—one for each potential

conversion path (Bb for B and Bc for C). If the user eventually

completes the conversion at point C, the application will emit

a regular event indicating the user’s action at C, followed by

a CONVERSION_EVENT with only the targetEventId filled

in.

The analytics framework then performs a backtracking

operation to discover the corresponding beacon event for this

conversion, specifically searching for Bc and not Bb, as B did

not occur. Upon finding Bc, the framework updates the

CONVERSION_EVENT with the sourceEventId derived

from Bc and stores this enriched event in the cache. This

process ensures that the framework accurately traces the

conversion back to its correct origin, even when multiple

conversions share the same entry point.

 Bb Bc

B

b
 c

Use Case: Mixed Conversion Paths

Consider a more complex scenario where the application has

mixed conversion paths, such as A -> B -> C -> D and X -> B

-> C -> Z, where UI elements B and C are part of both

conversion paths. In this case, when the user visits point A,

the application emits a BEACON_EVENT for the potential

conversion ending at D. Similarly, when the user visits point

X, another BEACON_EVENT is emitted for the potential

conversion ending at Z.

As the user progresses through the shared UI elements B and

C, these elements do not need to handle any specific

conversion-related instrumentation. The focus remains on the

initial beacons set at points A and X. When the user completes

a conversion at either D or Z, the application emits the

corresponding CONVERSION_EVENT, and the analytics

framework performs a beacon search to identify the correct

source event. The framework traces back from the conversion

point to find the beacon event associated with the user’s entry

point, linking the conversion to its origin. This approach

simplifies the instrumentation of shared UI elements, reducing

the complexity and ensuring that the conversion tracking

remains accurate and efficient.

 B Ba

B

b

Conclusion

 The proposed design offers a highly efficient solution for

tracking conversions in mobile applications, addressing the

complexities associated with traditional methods that require

the propagation of information through extensive

instrumentation. By leveraging the analytics framework's

event linking and beacon event mechanisms, this approach

significantly reduces the need for intricate and error-prone

instrumentation across multiple screens or user interactions.

The introduction of BEACON_EVENTs at strategic points

within conversion paths allows the system to accurately

identify the origin of a conversion without requiring detailed

tracking information to be carried forward through each step

of the user journey.

This design ensures that applications can maintain clean,

maintainable codebases while still achieving precise and

reliable conversion tracking. The use of the analytics

framework's cache to store and link events chronologically

provides a robust foundation for backtracking and identifying

source events. Even in complex scenarios with mixed or

parallel conversion paths, the framework can efficiently

determine the origin of any conversion, ensuring that product

owners and analysts have access to critical insights regarding

user behavior and engagement.

https://najer.org/najer

Volume 3 Issue 2, April – June 2022

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

Moreover, the flexibility of this design allows it to handle

corner cases where links between events may be broken or

when certain events are missing from the local cache. The

backend's ability to perform a limited trace-back search

ensures that conversions can still be accurately tracked, even

in less-than-ideal conditions. Overall, this approach not only

enhances the accuracy and efficiency of conversion tracking

but also simplifies the overall process, making it easier to

implement and maintain across a wide range of applications.

By eliminating the need for cumbersome and often unreliable

instrumentation, this design represents a significant

advancement in mobile analytics, providing a scalable and

effective solution for understanding user interactions and

optimizing conversion rates.

// Pseudo code for adding event into cache in framework with back trace logic
// Class representing the Analytics Framework
class AnalyticsFramework {

 // Cache to store events
 cache = []

 // Function to add an event to the framework
 function addEvent(Event event) {

 // process given Event : updating framework relevant info & update prevEventId
 processEvent(event);
 // Check if the event is of type CONVERSION_EVENT
 if (event.type == "CONVERSION_EVENT") {
 // Start the trace back process
 targetEventName = getEventName(event.targetEventId)
 previousEventId = event.previousEventId

 // Initialize sourceEventId to null
 sourceEventId = null

 // Traverse back through the previous events in the cache
 while (previousEventId != null) {
 // Get the previous event from the cache
 previousEvent = cache.getEvent(previousEventId)

 // If the previous event is a BEACON_EVENT and matches the target event name
 if (previousEvent.type == "BEACON_EVENT" && previousEvent.targetEventName == targetEventName) {
 // Set the sourceEventId to the ID of this BEACON_EVENT
 sourceEventId = previousEvent.id
 break
 }

 // Move to the next previous event in the chain
 previousEventId = previousEvent.previousEventId
 }

 // If a corresponding beacon event was found, update the CONVERSION_EVENT with the sourceEventId
 if (sourceEventId != null) {
 event.sourceEventId = sourceEventId
 }

 // Add the CONVERSION_EVENT to the cache
 cache.add(event)
 } else {
 // For all other event types, simply add them to the cache
 cache.add(event)
 }

 // update local track of previous Event
 updatePreviousEvent(event);
 }

 // Helper function to get the name of an event given its ID
 function getEventName(EventId eventId) {
 event = cache.getEvent(eventId)
 return event.name
 }

References

[1] https://www.singular.net/glossary/app-analytics/

[2] https://amplitude.com/guides/mobile-analytics

[3] https://hyperight.com/data-and-analytics-trends-that-

will-loom-large-in-2021-and-beyond/

[4] https://www.smartlook.com/blog/trends-analytics-2021/

[5] https://www.acumenresearchandconsulting.com/data-

analytics-market

https://najer.org/najer
https://www.singular.net/glossary/app-analytics/
https://amplitude.com/guides/mobile-analytics
https://hyperight.com/data-and-analytics-trends-that-will-loom-large-in-2021-and-beyond/
https://hyperight.com/data-and-analytics-trends-that-will-loom-large-in-2021-and-beyond/
https://www.smartlook.com/blog/trends-analytics-2021/
https://www.acumenresearchandconsulting.com/data-analytics-market
https://www.acumenresearchandconsulting.com/data-analytics-market

