
North American Journal of Engineering and Research

Est. 2020

Volume 5 Issue 1, January – April 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

AutoPrecisePrompts: Automated LLM-based Prompt

Engineering for Structured Data Processing

Praneeth Vadlapati

Email: praneethv@arizona.edu

Abstract

Processing and manipulating structured data with Language Models has become vital for various use cases. However, not all

language models may follow the expected output consistently, necessitating reattempts until the requirements are met. Repeated

queries increase the resources and time required to process the information. Such problems necessitate effective Prompt Engineer-

ing and testing across various test cases. Prompt Engineering, when performed without automation, requires a larger workforce

and significant time and resources. An alternative approach, such as Prompt Tuning, introduces further challenges. To solve all

the challenges, this research proposes an AI-driven automated prompt optimization system designed to enhance the accuracy of

prompts for various AI applications, using minimal time and resources. By iteratively testing prompts using a smaller language

model and adjusting the prompt with the help of a Large Language Model until optimal performance is achieved, the system

automates the process of optimizing prompts. Without requiring a training process before optimization, this approach ensures the

reusability and transparency of optimized prompts to use across different language models. The system uses the expected output

to offer a way for organizations to overcome the difficulties associated with manual-only prompt engineering. The system offers

a solution to create concise, high-quality prompts that yield the desired accuracy. During the experiment, the system achieved the

expected accuracy using only two iterations. The prompt led to satisfactory accuracy using multiple Language Models, proving

the reusability of the prompt.

Keywords: Artificial Intelligence (AI), Large Language Models, Prompt Engineering, Prompt Optimization, Prompting, Model

Performance, Model Reliability, Structured Data, AI Transparency

Introduction

Structured data is essential to numerous organizations. Lan-

guage Models (LMs) have a large knowledge base. Processing

structured data in formats such as CSV and JSON using LMs

requires optimal prompts to ensure the model responds in the

expected structure. “Prompting is programming.” [1] Making

models respond by following our requirements involves chal-

lenges [2]. Language models were often found to miss some

parts or add unnecessary parts that are not required. Overcoming

such challenges involves multiple methods, including Prompt

Engineering, Prompt Tuning, and Fine-tuning an LM. More

methods include querying repeatedly until the model responds

in the expected format and using a larger model by expecting a

response in the expected structure. Repeated queries consume

more time and resources.

Challenges with Other Approaches

Manual-only prompt engineering requires significant time, re-

sources, and workforce. Numerous iterations are required to at-

tain an acceptable accuracy. Human experts often miss crafting

the optimal prompt or lack prompting skills [2]. The approach

of Prompt Tuning [3] involves challenges and may fail to

achieve the same results as Prompt Engineering. It relies on the

performance of an optimization algorithm. It involves an addi-

tional step of tuning the prompt parameters.

Soft prompting is flexible as it involves embeddings instead of

fixed prompts. However, it can be challenging to interpret and

control, as the internal representations are not transparent and

hard to trust directly [4]. Fine-tuning the model consumes time

and resources. Fine-tuning does not always ensure satisfactory

accuracy for the requirements [5]. In the current pace of new

models getting released, switching to a newer model is not flex-

https://najer.org/najer

Volume 5 Issue 1, January – April 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

ible in the case of fine-tuning. These methods need special algo-

rithms or training datasets, which have the potential to reduce

their generalizability to new or unseen tasks.

Automated Prompt Optimization and Its Benefits

This paper proposes a system for automated optimization of

prompts, which ensures transparency in the prompts and the re-

usability of the prompts across multiple models. This approach

does not involve a training process and ensures the same ad-

vantages as alternative approaches without the same disad-

vantages. Prompts have interpretability and can be understood

by anyone who is not an expert in developing LMs.

Advantages of Small Language Models

When compared to larger models, smaller models are faster and

consume lesser resources [6], which allows them to process a

large amount of data in less time. Smaller models are being de-

veloped rapidly. When using smaller models, prompts should be

optimized to ensure reliability.

Literature Review

MAPO [7] and Robust Prompt Optimization [8] have improved

model-specific prompt tuning and robustness against distribu-

tion shifts, but they rely on task-specific data and manual inter-

vention. Even though approaches such as APE [9] and AutoHint

[10] automate some aspects of prompt engineering, their focus

is not on processing structured data and requires datasets for

training. Existing research on prompt optimization focused on

adaptability and robustness and left a gap in the effectiveness

and scalability of handling structured data using language mod-

els while ensuring the reusability of the responses and interpret-

ability of prompts.

Despite the progress of advancements, gaps exist in interaction

with unseen scenarios, scalability, robustness, and adaptation to

task complexity. Addressing such gaps remains pivotal for fur-

ther progress in Prompt Optimization for LMs. Existing research

focuses on automated prompt tuning and soft prompting, leaving

a research gap in automated Prompt Engineering to make lan-

guage models process structured data efficiently, unlike pro-

cessing unstructured data. Existing work uses datasets for train-

ing. However, the system proposed in this paper uses only an

existing prompt and the expected output. The system does not

undergo a training process, which consumes extra resources,

time, and additional workforce for various organizations such as

startups and non-profits.

Methods

Testing the Initial Prompt using Expected Output

GPT-4 Turbo [11] is the Large Language Model selected to re-

write the prompts. Claude Instant 1.2 [12] is the smaller model

selected for affordable usage to test the prompts. An initial

prompt template, as well as the expected response, are written

for the experiment. Ten trials are conducted using the small LM

to check the accuracy of the initial prompt.

Prompt Template 1. Initial Prompt Template from the User

Here is input data: {structured_input_data}.

Provide the name and age of people whose age is below 35.

Sample Value 1. Structured Sample CSV Data Provided as Input

```csv 

Name,Gender,Age,City 

John,Male,25,NYC 

Jane,Female,30,LA 

Doe,Male,38,Chicago 

Emily,Female,48,Houston 

Henry,Male,66,Philadelphia 

``` 

Sample Value 2. Expected Structured CSV Response

```csv 

Name,Age 

John,25 

Jane,30 

``` 

Sample Value 3. Structured Sample JSON Data Provided as Input

```json 

[ 

    {"Name": "John", "Gender": "Male",  

        "Age": 25, "City": "NYC"}, 

 

    {"Name": "Jane", "Gender": "Female",  

        "Age": 30, "City": "LA"}, 

 

    {"Name": "Doe", "Gender": "Male",  

        "Age": 38, "City": "Chicago"}, 

 

    {"Name": "Emily", "Gender": "Female",  

        "Age": 48, "City": "Houston"}, 

 

    {"Name": "Henry", "Gender": "Male",  

        "Age": 66, "City": "Philadelphia"} 

] 

```  

Sample Value 4. Expected Structured JSON Response

```json 

[ 

    {"Name": "John", "Age": 25}, 

    {"Name": "Jane", "Age": 30} 

] 

``` 

https://najer.org/najer

Volume 5 Issue 1, January – April 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

Optimizing Prompts using the Larger Model

A prompt is assumed as optimal if it leads to at least 90% accu-

racy. The larger model is used to evaluate the prompt and re-

sponse against the expected response to attempt to optimize the

prompt template. The accuracy of the smaller model is checked

again using the new prompt. The prompt template is regenerated

up to five times until an optimal prompt template has been gen-

erated.

Prompt Template 2. Prompt to Optimize the Current Prompt

Value of structured_input_data variable (includes

backticks):

{structured_input_data}

Processing criteria (from Initial Prompt):

{processing_criteria}

Current prompt template: {current_prompt_template}

Accuracy of current prompt: {current_accuracy}

Current response: {current_response}

Expected response: {expected_response}

Act as a Prompt Engineer and an expert Linguist. Write

prompt to process structured data using language

model. Rewrite prompt template to generate expected

response (including its special characters and back-

ticks). Use example_response placeholder to indicate a

sample response. Don't add your own sample in the

template.

Don't include answer or expected response. CSV re-

sponses must include expected column names without

extra columns. Write only new prompt template with-

out any other text. At last, emphasize on the processing

criteria I mentioned. Backticks and format must be ex-

actly same as the example response.

Avoid backticks like ```. Mention "{structured_in-

put_data}" placeholder to indicate input data. Make

sure response includes backticks. Don't miss both

placeholders mentioned in curly braces. Add "**Write

like**: {example_response}" as placeholder to men-

tion example response.

Shortening the Prompt using the Larger Model

After constant improvement, the final prompt would be much

longer than the initial prompt. Hence, concise prompts are gen-

erated. If the accuracy produced by the shorter prompt is the

same as the optimized prompt, it is considered to be used.

Prompt Template 3. Prompt to Shorten the Current Prompt

Current prompt template:

{current_prompt_template}

Be a Prompt Engineer. Shorten the above prompt tem-

plate. Make sure the prompt is short and concise. Re-

tain the placeholders values and key information. Do

not remove placeholders 'structured_input_data' and

'example_response'. Return only the shortened prompt

without any other text. When a language model uses

the prompt to generate response, backticks and format

must be exactly same as the example response. Make

sure response from the model includes the formatted

data inside backticks with the format like

{current_response}

Testing the Prompt using Multiple Language Models

Final testing is performed on multiple models to explore the re-

usability of the prompts generated by the system. Claude Instant

1.2 [12], GPT 3.5 Turbo [13], and Llama 2 (13B) [14] are the

smaller LMs that are selected. GPT-4 Turbo [11] is a large

model selected to experiment on whether using a large model

would result in accurate structured responses.

Results

Generating Prompts using the Larger Model

Optimal prompts were generated successfully by the large

model using only two iterations of optimizing prompts in both

CSV and JSON test cases. Shortening the prompt has led to a

reduction in the accuracy for five attempts for both test cases.

Prompt Template 4. Optimized Prompt for CSV test case

Please filter the data contained within

{structured_input_data} to identify individuals who

are younger than 35 years old and provide a CSV for-

matted list that includes only their Name and Age. En-

sure the output is presented with the exact column

headers as in the input data and that it is enclosed

within backticks, consistent with

{example_response}.

Apply special attention to meet the specified pro-

cessing criteria and maintain the integrity of the CSV

format, including leading and enclosing backticks.

Write like: {example_response}

Prompt Template 5. Optimized Prompt for JSON test case

Given the following data in JSON format:

{structured_input_data}, extract and provide the name

and age of individuals who are under the age of 35 in

the same JSON format. Ensure that your output

matches the precise structure depicted here:

Write like: {example_response}

https://najer.org/najer

Volume 5 Issue 1, January – April 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

Testing the Prompt using Multiple Language Models

The accuracy has been tested on multiple models using the same

prompt to test the reusability. Common mistakes included back-

ticks (```) not found as per the example response to indicate the

structured data and the format “CSV” or “JSON” not being men-

tioned by the model in the response. Rarely did the models re-

turn Python code to process the data, or extra rows were added

without removal based on the criteria. For the JSON test case,

Claude displayed satisfactory accuracy with the initial prompt,

and hence, GPT-3.5 Turbo was used as the base small model.

The prompt optimized for Claude has been optimal for Llama 2

(with an accuracy of 80%) even though the prompt was not op-

timized for Llama 2. The prompt can be further engineered to

make other models respond in the expected format.

TABLE I. ACCURACY USING EACH PROMPT WITH MULTIPLE MODELS IN

CSV TEST CASE

Model
Accuracy using each prompt

Initial Prompt Optimized Prompt

Claude Instant 0% 90%

GPT-3.5 Turbo 40% 90%

GPT-4 Turbo 10% 100%

Llama 2 0% 0%

TABLE II. ACCURACY USING EACH PROMPT WITH MULTIPLE MODELS IN

JSON TEST CASE

Model
Accuracy using each prompt

Initial Prompt Optimized Prompt

GPT-3.5 Turbo 0% 100%

Claude Instant 90% 100%

GPT-4 Turbo 0% 100%

Llama 2 0% 80%

Discussion and Limitations

The purpose of this study is only to experiment with an iterative

approach to automate the Prompt Engineering process. The sys-

tem has the possibility to make a difference in the efficiency of

processing structured data for various organizations. This study

involves the usage of only text and does not involve multimodal

data such as images. Standard benchmarks can be used to test

the system and compare it against base models. The system has

not been experimented with to handle “impossible responses,”

such as harmful responses, which most of the language models

refuse to generate. This research does not involve handling when

the input, prompt, or expected response has more tokens than

what the model is designed to process. The system proposed in

this paper is used to evaluate a new approach of prompt engi-

neering to process structured data. However, it is not tested us-

ing a wide variety of test cases and data formats other than CSV

and JSON.

Conclusion

In order to address the inefficiencies of manual-only prompt en-

gineering and the limitations of alternative approaches like fine-

tuning and prompt tuning, this paper presents an AI-driven

method to optimize prompts. Using a larger model did not en-

sure a satisfactory accuracy of the response structure, and auto-

mated prompt engineering has been beneficial. The system pro-

posed in this paper has generated successful prompts to process

structured data using language models. The system has success-

fully automated the process of improving prompts using only

two iterations, ensuring satisfactory accuracy without necessi-

tating large training datasets or the consumption of huge

amounts of resources. It was proved that the final optimized

prompts could be reused with other language models in both

CSV and JSON test cases, proving the reusability of the prompt.

The system failed in the attempts to use a language model to

further shorten the prompts to achieve a balance between prompt

conciseness and response accuracy. Future work might include

testing the system with a broader range of response structures,

diverse test cases, and numerous language models, further en-

hancing the robustness and scalability of the automated optimi-

zation of prompts.

References

[1] L. Beurer-Kellner, M. Fischer, and M. Vechev, “Prompting
Is Programming: A Query Language for Large Language
Models,” Proc. ACM Program. Lang., vol. 7, no. PLDI, Jun.
2023, doi: 10.1145/3591300.

[2] J. D. Zamfirescu-Pereira, R. Y. Wong, B. Hartmann, and Q.
Yang, “Why Johnny Can’t Prompt: How Non-AI Experts
Try (and Fail) to Design LLM Prompts,” in Proceedings of
the 2023 CHI Conference on Human Factors in Computing
Systems, in CHI ’23. New York, NY, USA: Association for
Computing Machinery, Apr. 2023. doi:
10.1145/3544548.3581388.

[3] Y. Wang, J. Chauhan, W. Wang, and C.-J. Hsieh, “Univer-
sality and Limitations of Prompt Tuning,” in Advances in
Neural Information Processing Systems, A. Oh, T. Nau-
mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine,
Eds., Curran Associates, Inc., 2023, pp. 75623–75643.
[Online]. Available: https://proceedings.neurips.cc/pa-
per_files/pa-
per/2023/file/eef6aecfe050b556c6a48d9c16b15558-Paper-
Conference.pdf

[4] L. Bailey, G. Ahdritz, A. Kleiman, S. Swaroop, F. Doshi-
Velez, and W. Pan, “Soft prompting might be a bug, not a
feature,” in ICML 2023 Challenges of Deploying Genera-
tive AI Workshop, Jun. 2023.

[5] O. Ovadia, M. Brief, M. Mishaeli, and O. Elisha, “Fine-
Tuning or Retrieval? Comparing Knowledge Injection in
LLMs,” Dec. 2023, arXiv:2312.05934. [Online]. Available:
https://arxiv.org/abs/2312.05934

[6] Q. Fournier, G. M. Caron, and D. Aloise, “A Practical Sur-
vey on Faster and Lighter Transformers,” ACM Comput.
Surv., vol. 55, no. 14s, Jul. 2023, doi: 10.1145/3586074.

[7] Y. Chen et al., “MAPO: Boosting Large Language Model
Performance with Model-Adaptive Prompt Optimization,”

https://najer.org/najer

Volume 5 Issue 1, January – April 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

in Findings of the Association for Computational Linguis-
tics: EMNLP 2023, H. Bouamor, J. Pino, and K. Bali, Eds.,
Singapore: Association for Computational Linguistics,
Dec. 2023, pp. 3279–3304. doi: 10.18653/v1/2023.find-
ings-emnlp.215.

[8] M. Li, W. Wang, F. Feng, Y. Cao, J. Zhang, and T.-S. Chua,
“Robust Prompt Optimization for Large Language Models
Against Distribution Shifts,” in Proceedings of the 2023
Conference on Empirical Methods in Natural Language
Processing, H. Bouamor, J. Pino, and K. Bali, Eds., Singa-
pore: Association for Computational Linguistics, Dec.
2023, pp. 1539–1554. doi: 10.18653/v1/2023.emnlp-
main.95.

[9] Y. Zhou et al., “Large Language Models are Human-Level
Prompt Engineers,” in The Eleventh International Confer-
ence on Learning Representations, Feb. 2023. [Online].
Available: https://openreview.net/forum?id=92gvk82DE-

[10] H. Sun et al., “AutoHint: Automatic Prompt Optimization
with Hint Generation,” Aug. 2023, arXiv:2307.07415.
[Online]. Available: https://arxiv.org/abs/2307.07415

[11] OpenAI, “GPT-4 Turbo (gpt-4-1106-preview) [Large Lan-
guage Model].” [Online]. Available: https://openai.com/in-
dex/new-models-and-developer-products-announced-at-
devday/

[12] Anthropic, “Claude Instant (1.2) [Language Model].”
[Online]. Available: https://www.anthropic.com/news/re-
leasing-claude-instant-1-2

[13] OpenAI, “GPT-3.5 Turbo (gpt-3.5-turbo-1106) [Large Lan-
guage Model].” [Online]. Available: https://openai.com/in-
dex/new-models-and-developer-products-announced-at-
devday/

[14] Meta, “Llama 2 (13B) [Language Model].” [Online]. Avail-
able: https://github.com/meta-
llama/llama/blob/main/MODEL_CARD.md

https://najer.org/najer

