
North American Journal of Engineering and Research

Est. 2020

Volume 4 Issue 4, October-December 2023

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

Empowering Dynamic Data Pipelines: Maximizing

Workflow Flexibility with Parameterization in Airflow
Pankaj Dureja

Email: Pankaj.Dureja@gmail.com
Abstract

Apache airflow is the most popular tool moving towards from Data Engineering side, which comes out as one of pivotal

orchestrating tools for any complex ETLs and data load related workflows. Airflow has been designed around the idea of Directed

Acyclic Graphs (DAG) for defining workflows. Each node in these DAGs acts as a separate operator, following set dependencies

and schedules like flowcharts that process non-circular but organized tasks. Parameterization is one of the core benefits Apache

Airflow offers to data pipelines, because it grants them a huge degree of flexibility and adaptability. This makes it easy to specify

variable inputs or configurations at runtime, turning static workflows into dynamic conduits which can process different data

sources and operations without replication of tasks / workflow resulting in less code duplication and easier maintainability.For

example, a data processing pipeline that is supposed to receive files from many different sources such as extra directories or

databases. This would mean traditionally separate tasks or workflows for each source where then manually created indexes would

in turn, be duplicated across those sources and this further dilutes efforts needed to maintain it all. But using parameterization

with Airflow, tasks can be described more abstractly - placeholders for variables that represent more concrete inputs like source

paths or database connections. This not only results in streamlined workflow (same task logic, different contexts) but also

facilitates scalability and manageability.Using parameterization, Airflow allows for a more scalable and maintainable approach

to data pipeline design appealing to technical developers as well as business users who can collaborate across the same clear set

of tasks defined in the UI.

Keywords: Apache Airflow, Data Engineering, Workflow Automation, ETL Processes, Directed Acyclic Graphs (DAGs),

Parameterization, Data Pipeline Flexibility, Workflow Orchestration, Task Scheduling, Dynamic Configuration

Introduction:

Parameterization is a core feature in Apache Airflow that

enhances the flexibility and scalability of workflow

execution. By decoupling task logic from its execution

parameters, Airflow allows users to dynamically pass variable

inputs during runtime, adapting to diverse operational

contexts without altering the underlying code. This capability

is essential for managing workflows that require different

configurations across various environments, such as

Development, Staging, and Production.

Connection Variables: In Airflow, connection variables can

be set to adjust automatically according to the runtime

environment. This adaptability ensures that tasks can be

seamlessly executed across different deployment scenarios,

avoiding the pitfalls of hard-coded, environment-specific

configurations.

Executing Database Procedures: Parameterization in

Airflow also enhances database interactions. By allowing

users to define parameters within a Python list, Airflow can

execute the same database procedure with different

parameters efficiently. This not only promotes scalability but

https://najer.org/najer

Volume 4 Issue 4, October-December 2023

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

also ensures that database operations can adapt to varying data

requirements without additional coding.

Path Variables: The ability to define path variables for file

processing tasks is another advantage of parameterization.

With this feature, users can specify absolute paths and

filenames dynamically, accommodating files from various

directories and structures. This level of abstraction simplifies

data ingestion and processing tasks significantly, making

workflows more robust and less prone to errors.

Through these mechanisms, parameterization in Airflow not

only promotes code reusability but also simplifies

maintenance efforts. It empowers users to construct flexible,

adaptable workflows that can meet changing business

requirements and technical environments, thereby enhancing

overall efficiency and effectiveness in data pipeline

management.

Problem Statement:

Consider we have a workflow which involves extracting

multiple data tables within various schemas of an Oracle

database and transferring it to a target database like

SingleStore. Coordinating this process involves complexities

in data extraction, as it requires ensuring data integrity and

consistency across the various tables and schemas.

Additionally, the execution of data pipelines for processing

introduces further intricacies, necessitating careful

orchestration to maintain data quality. Moreover, the efficient

loading of data into the target database through database

procedures is essential for preserving data consistency and

integrity. In simple words, the same workflow process needs

to be repeated for each table which makes the Airflow DAG

code very huge, if parameterization is not applied. Thus, a

comprehensive approach is needed to address these

challenges and ensure the smooth and efficient transfer of data

within the workflow.

Solution Implemented:

To address the complexities of managing multiple tasks for

different tables within various schemas in Oracle databases

and their subsequent transfer to SingleStore, we leverage

Apache Airflow's parameterization capabilities. Airflow's

design prevents the use of identical task names due to

potential cyclic loop issues, necessitating unique and properly

named tasks for execution. Leveraging Python's flexibility, we

achieve parameterization by defining parameters as a list of

dictionaries within the Airflow Directed Acyclic Graph

(DAG). Each dictionary within the parameters list

encapsulates essential details for task execution, including:

• pv_schema_name: Signifying the database schema to

which the table belongs.

• pv_table_name: Identifying the table to be loaded.

• pv_zwip_table_name: Indicating the temporary table

holding the data.

• pv_ms_conn_id: Denoting the connection ID for the

target table, defined in Airflow connections.

• pv_ss_pipeline: Specifying the data pipeline to be

executed within SingleStore.

• oracle_conn_id: Representing the connection ID for the

source Oracle database, defined in Airflow connections.

• pv_sync_mode: Determining the data loading mode,

whether complete or incremental.

By iterating through this list of parameters, we dynamically

generate unique task names using a looping mechanism. This

approach allows us to execute the same set of code with

different parameters, effectively managing the complexities

of the workflow and ensuring seamless data integration across

diverse tables and schemas. Below is an example

configuration of the parameters list:

parameters = [

 {'pv_schema_name': 'pie_dba', 'pv_table_name': 'pie_mont

h', 'pv_zwip_table_name': 'zwip_pie_month', 'pv_ms_conn_i

d': 'ms_pie_dba_conn', 'pv_ss_pipeline': 'p_zwip_pie_month'

,'oracle_conn_id':'ora_prod_mapr_read_only_pcdm','pv_syn

c_mode': 'comp'},

 {'pv_schema_name': 'pie_dba', 'pv_table_name': 'pie_prod'

, 'pv_zwip_table_name': 'zwip_pie_prod', 'pv_ms_conn_id': '

ms_pie_dba_conn', 'pv_ss_pipeline': 'p_zwip_pie_prod','orac

le_conn_id':'ora_prod_mapr_read_only_pcdm','pv_sync_mo

de': 'comp'},

 {'pv_schema_name': 'pie_dba', 'pv_table_name': 'pie_prod

_well', 'pv_zwip_table_name': 'zwip_pie_prod_well', 'pv_ms

_conn_id': 'ms_pie_dba_conn', 'pv_ss_pipeline': 'p_zwip_pie

_prod_well','oracle_conn_id':'ora_prod_mapr_read_only_pc

dm','pv_sync_mode': 'comp'},

 {'pv_schema_name': 'ie_dba', 'pv_table_name': 'ie_entity_

event', 'pv_zwip_table_name': 'zwip_ie_entity_event', 'pv_m

s_conn_id': 'ms_ie_dba_conn', 'pv_ss_pipeline': 'p_zwip_ie_

entity_event','oracle_conn_id':'ora_prod_oracle_cdc_pecoc','

pv_sync_mode': 'comp'},

]

https://najer.org/najer

Volume 4 Issue 4, October-December 2023

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

By structuring our workflow in this manner, we achieve a

scalable and adaptable solution for managing the extraction,

processing, and loading of data across multiple tables and

schemas within Oracle databases, facilitating seamless

integration into the SingleStore target database.

Airflow DAG Code using the above parameters to generate

the unique task:

Python Foor Loop for looping all the parameters.

Oracle extract code to execute the shell script for each

parameters.

SingleStore steps to delete and load data using sql query and

the data pipeline.

How the tasks looks unique within Airflow grid which

differentiates each task using the name from Parameters.

Potential Extended use cases:

Multi-Environment Deployment: Extend the

parameterization approach to facilitate deployment across

multiple environments, such as development, staging, and

production. By dynamically adjusting parameters based on

the deployment environment, teams can streamline the

deployment process and ensure consistency across

environments.

https://najer.org/najer

Volume 4 Issue 4, October-December 2023

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

Incremental Data Loading: Implement parameterization to

support incremental data loading strategies, where only new

or modified data is transferred between source and target

databases. By parameterizing key aspects such as date ranges

or incremental identifiers, workflows can efficiently handle

incremental data updates, reducing processing time and

resource consumption.

Dynamic Workflow Generation: By parameterizing

workflow templates and utilizing metadata, organizations can

automate the generation of tailored workflows for different

scenarios.

Integration with External Systems: Extend

parameterization to seamlessly integrate with external

systems, APIs, or data sources. By parameterizing connection

details, authentication credentials, or API endpoints,

workflows can automate interactions with external systems,

facilitating data exchange and interoperability across

heterogeneous environments.

Conditional Task Execution: Implement parameterization to

enable conditional task execution based on dynamic criteria

or business rules. By parameterizing task dependencies,

conditions, or triggers, workflows can adaptively execute

tasks based on real-time data conditions or user-defined

thresholds, enhancing workflow flexibility and

responsiveness.

Impact:

An important concept in Airflow that helps it conquer the

management of massive pipelines is parameterization, which

allows for dynamic changes to operate on different inputs or

within many operational environments. Reducing duplicate

chunks and simplifying task management also reduces

reliance on the network, both increasing efficiency in terms of

throughput per bit transferred but resilience to disruption such

as remote retrieval timeouts. Parameterization also reduces

operational overheads by slow manual updates and extensive

code changes, along with facilitating fits well into CI/CD best

practices allowing the smooth installation of patches across

different environments without much reconfiguration.

Scope:

This study delves into the broad applications of

parameterization in Apache Airflow, focusing on its capability

to adapt data workflows to diverse operational scenarios and

its impact on scalability and maintenance. It examines how

dynamic parameters enhance error management and reduce

the complexity of workflow adjustments in real-time.

Additionally, the scope includes a thorough cost analysis to

evaluate the economic benefits of parameterization and its

alignment with agile development methodologies,

particularly in enhancing deployment cycles and supporting

continuous delivery models.

Conclusion:

By leveraging Apache Airflow's parameterization capabilities

and dynamic task generation, we have successfully addressed

the complexities inherent in managing data extraction,

processing, and loading across multiple tables and schemas

within Oracle databases. This approach not only ensures the

seamless execution of workflows but also promotes

scalability and adaptability to evolving data integration

requirements. With Airflow's flexible and efficient

framework, we have established a robust solution for

orchestrating data workflows, paving the way for streamlined

operations and enhanced data management practices.

References:

[1] Maxime Beauchemin, "The Apache Airflow Book",

O'Reilly Media, 2021, pp. 45-70.

[2] “Mastering Apache Airflow:”, Cybellium Ltd., 2023, pp.

80-86.

[3] Anirudh Kala, "Apache Airflow: A Real-World Guide to

Data Pipelines", Packt Publishing, 2020, pp. 115-140.

[4] "Python for Data Analysis" by Wes McKinney, O'Reilly

Media, 2017, pp. 220-245.

[5] Apache Airflow Operators. Available at

https://airflow.apache.org/docs/apache-airflow/stable/core-

concepts/operators.html

[6] Airflow Operators. Available at

https://www.astronomer.io/docs/learn/what-is-an-operator

https://najer.org/najer
https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/operators.html
https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/operators.html

