
North American Journal of Engineering and Research

Est. 2020

Volume 6 Issue 1, January-March 2025

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

AI-Driven Code Optimization: Leveraging ML to

Refactor Legacy Codebases

Santhosh Podduturi

Email id: santhosh.podduturi@gmail.com

Abstract

Legacy codebases form the backbone of many enterprise systems, yet they often suffer from technical debt, outdated design

patterns, and maintainability issues. Traditional refactoring approaches require extensive manual effort, making the process time-

consuming and error-prone. With recent advancements in Artificial Intelligence (AI) and Machine Learning (ML), automated

techniques for analyzing, refactoring, and optimizing legacy code are emerging as powerful solutions.

This paper explores the role of AI-driven approaches in modernizing legacy systems, focusing on how ML models can analyze

code structures, detect inefficiencies, and generate optimized refactored versions while preserving functionality. We discuss

various AI-based tools and techniques, such as deep learning models for code transformation, reinforcement learning for

performance optimization, and intelligent code review systems. Additionally, we examine real-world implementations of AI-

driven refactoring, outlining its benefits, challenges, and future directions.

By leveraging AI for automated code optimization, organizations can reduce maintenance costs, improve system performance,

and accelerate digital transformation. However, challenges such as explainability, trust in AI-generated code, and security

concerns remain key areas for further exploration. This paper aims to provide a comprehensive understanding of AI-driven code

optimization and its potential to revolutionize software maintenance and modernization.

Keywords: Code refactoring, Machine learning in software engineering, Legacy code modernization, Automated code

optimization, AI-assisted software development, Code smell detection, Static and dynamic code analysis, Autonomous code

improvement.

Introduction
Background

Software applications evolve over time, but legacy systems

often struggle with outdated code structures, technical debt,

and inefficient algorithms. These systems are difficult to

maintain, making refactoring a critical process to ensure

continued functionality and performance. Traditionally,

refactoring has been a manual and resource-intensive task,

requiring significant developer effort. However, recent

advancements in AI and ML have opened new avenues for

automating code analysis and optimization.

Machine learning models trained on large codebases can learn

patterns, detect redundant or inefficient code, and even

suggest or generate optimized code replacements. AI-

powered tools can analyze syntax, semantics, and execution

behavior, allowing for intelligent code transformations that

align with modern best practices. The integration of AI-driven

solutions into software development pipelines can

significantly reduce the time and effort required for

refactoring, while also improving the reliability of the

optimized code. [3], [4]

Problem Statement

The challenges associated with refactoring legacy codebases

include: [1], [5]

• Code Complexity: Older codebases often lack

modularity and adhere to outdated paradigms.

• High Maintenance Costs: Manual refactoring is time-

consuming and prone to human error.

• Performance Bottlenecks: Inefficient code structures

can lead to slow execution times and resource-intensive

operations.

• Security Risks: Legacy code may contain vulnerabilities

that need to be addressed during refactoring.

While traditional static analysis tools help in identifying

certain inefficiencies, they often fall short in suggesting

https://najer.org/najer

Volume 6 Issue 1, January-March 2025

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

meaningful improvements. AI-driven refactoring aims to

bridge this gap by learning from existing high-quality code

and applying transformations intelligently.

Objectives

This paper aims to:

• Explore AI-driven techniques for analyzing and

refactoring legacy codebases.

• Examine ML models and tools used for automated code

optimization.

• Compare AI-driven vs. traditional refactoring

approaches, evaluating their benefits and challenges.

• Discuss real-world applications of AI in code

modernization.

• Identify challenges and future research directions in

AI-driven code optimization.

Common Challenges in Maintaining and

Refactoring Legacy Code
Legacy codebases, often built decades ago, continue to power

critical business operations across industries such as finance,

healthcare, and telecommunications. However, maintaining

and refactoring these systems presents significant challenges.

This section explores the key difficulties associated with

legacy code and why traditional refactoring approaches

struggle to address them effectively. [3], [4]

Code Complexity and Lack of Documentation

Legacy applications are typically large and complex, often

developed using outdated paradigms that do not adhere to

modern software design principles. Over time, multiple

developers may have contributed to the codebase without

proper documentation, making it difficult to understand the

logic and dependencies. Key challenges include:

• Lack of modularity: Many legacy systems use

monolithic architectures with tightly coupled

components, making it hard to isolate and refactor

individual modules.

• Spaghetti code: Poorly structured code with deeply

nested dependencies and redundant logic, leading to

maintainability issues.

• Minimal or outdated documentation: Without clear

documentation, developers must rely on code analysis

and trial-and-error debugging, increasing maintenance

time.

AI-driven solution: Machine learning models can analyze

large codebases and generate structural overviews, detect

duplicate or redundant code, and suggest refactoring

strategies. AI-powered documentation tools can also generate

summaries of functions and classes to aid developers.

Technical Debt Accumulation

Technical debt arises when short-term fixes and outdated

practices accumulate over time, leading to an inefficient and

difficult-to-maintain codebase. Some factors contributing to

technical debt include:

• Quick fixes and workarounds: Temporary patches that

degrade system integrity.

• Deprecated libraries and frameworks: Many legacy

systems use outdated dependencies that are no longer

supported.

• Hardcoded configurations: Instead of flexible,

parameterized settings, many legacy applications have

hardcoded values, making scalability difficult.

AI-driven solution: Machine learning models trained on

modern coding practices can identify technical debt patterns

and recommend best practices for refactoring. Automated

dependency analysis can also suggest modern replacements

for deprecated libraries.

Performance Bottlenecks and Inefficiencies

Many legacy applications suffer from poor performance due

to outdated algorithms, excessive memory usage, and

inefficient database queries. Common issues include:

• Redundant computations and memory leaks

• Inefficient data structures and algorithms

• Blocking I/O operations that slow down execution

AI-driven solution: AI-based performance profiling tools

can analyze runtime behavior, detect slow functions, and

recommend optimized replacements based on best practices.

Security Vulnerabilities

Legacy systems are often riddled with security vulnerabilities

due to outdated authentication mechanisms, poor input

validation, and lack of encryption. Common vulnerabilities

include:

• SQL injection, buffer overflows, and cross-site

scripting (XSS)

• Hardcoded credentials and weak encryption

• Lack of compliance with modern security standards

AI-driven solution: AI-powered security analysis tools can

automatically scan code for vulnerabilities, suggest fixes, and

even generate secure code alternatives.

Compatibility Issues with Modern Technologies

Many legacy applications struggle to integrate with modern

APIs, cloud services, and microservices architectures. Some

challenges include:

• Incompatibility with containerization and cloud

platforms

• Monolithic structures that do not support modular

scaling

• Lack of RESTful API or GraphQL integration

AI-driven solution: AI-based code translators and

refactoring tools can assist in migrating legacy applications to

https://najer.org/najer

Volume 6 Issue 1, January-March 2025

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

modern architectures by automatically suggesting API

wrappers or modular transformations.

High Maintenance Costs and Skill Shortages

Maintaining legacy systems requires specialized knowledge,

but many original developers are no longer available.

Additionally, newer developers may not be familiar with

outdated languages like COBOL, Fortran, or early versions of

Java.

• Expensive to maintain due to lack of expertise

• Difficult to onboard new developers without proper

documentation

AI-driven solution: AI-based learning tools can generate

explanations for complex legacy code, helping new

developers onboard faster. AI-powered code translation tools

can also help migrate legacy applications to modern

programming languages.

AI and ML Techniques for Automated Code

Analysis and Optimization
The advancements in Artificial Intelligence (AI) and Machine

Learning (ML) have enabled automated techniques to

analyze, refactor, and optimize legacy codebases. These

techniques help in identifying inefficient patterns,

recommending refactoring strategies, and even generating

optimized code with minimal human intervention. This

section explores various AI-driven approaches for code

analysis and optimization. [1], [7]

Code Representation for AI Models

Before AI can analyze or optimize a codebase, the source code

must be transformed into a structured format suitable for

machine learning models. Common representations include:

• Abstract Syntax Trees (ASTs): Converts source code

into tree structures representing syntactic elements. AI

models use ASTs to detect patterns, redundant logic, or

security vulnerabilities.

• Control Flow Graphs (CFGs): Represents the

execution flow of a program, helping AI models detect

performance bottlenecks or dead code.

• Data Flow Graphs (DFGs): Helps in analyzing variable

dependencies and memory usage to optimize

performance.

• Embedding Techniques: Neural networks use word

embeddings (e.g., Code2Vec, CodeBERT) to convert

code into vector representations for similarity analysis

and pattern recognition.

AI Techniques for Code Analysis

AI models analyze legacy code using pattern recognition,

anomaly detection, and predictive analytics. The following

techniques are commonly used:

Static Code Analysis using AI

AI-enhanced static analysis tools scan source code without

executing it, identifying syntax errors, code smells, and

security vulnerabilities.

• ML-based Linters: Tools like DeepCode and

SonarQube use ML models to detect common mistakes

beyond traditional rule-based linting.

• Deep Learning for Defect Prediction: AI models

trained on historical bug reports can predict which parts

of the code are more likely to contain defects.

Dynamic Code Analysis with AI

Unlike static analysis, dynamic analysis involves running the

code and monitoring its behavior in real-time. AI techniques

include:

• Execution Profiling: AI models analyze runtime

behavior to detect performance bottlenecks and

inefficient loops.

• Anomaly Detection: AI-based monitoring tools can

detect unusual memory usage or security threats while the

code is executing.

AI Techniques for Automated Refactoring

AI-driven refactoring automates restructuring code to

improve maintainability and efficiency while preserving

functionality. Some key ML-based techniques include:

Code Clone Detection and Deduplication

AI models detect duplicate or nearly identical code snippets

across a project, helping developers refactor redundant logic.

• Deep Learning-based Clone Detection: Models like

Code2Vec and CodeBERT identify semantically similar

functions and suggest consolidations.

• Graph-based Analysis: AI tools compare ASTs and

CFGs to merge functionally identical blocks of code.

AI-assisted Code Simplification

Complex, deeply nested logic can be automatically refactored

into simpler, modular functions.

• Sequence-to-Sequence Models (Seq2Seq): These

neural networks translate convoluted code into cleaner

versions, much like language translation.

• Reinforcement Learning (RL): AI models iteratively

suggest and evaluate refactoring strategies, optimizing

code readability and performance. [7]

Automated Variable and Function Renaming

AI models improve code readability by automatically

renaming cryptic variable names based on context.

• Natural Language Processing (NLP): AI analyzes

surrounding code comments and function usage to

suggest meaningful variable names.

AI for Performance Optimization

Beyond readability improvements, AI models optimize

performance by detecting inefficient code patterns and

suggesting optimized alternatives.

https://najer.org/najer

Volume 6 Issue 1, January-March 2025

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

 M AI-driven Algorithm Selection

AI models analyze execution patterns and suggest optimized

algorithms for common operations.

• Example: Replacing a brute-force search with a more

efficient hash-based lookup.

Predictive Compilation and Optimization

AI-driven compilers analyze code execution patterns and

apply optimizations dynamically.

• JIT Optimization: Just-in-Time (JIT) compilers

powered by AI predict execution hotspots and optimize

code at runtime.

AI-based Memory Optimization

AI models analyze memory allocation and usage patterns to

suggest improvements.

• Garbage Collection Optimization: AI-enhanced

memory profiling tools recommend better memory

management strategies to prevent leaks.

AI-powered Code Generation and Transformation

AI models are now capable of generating optimized code

snippets from scratch or transforming legacy code into

modern programming paradigms.

 Code Translation from Legacy to Modern Languages

AI models translate outdated code into modern programming

languages.

• Example: Converting COBOL code into Java or Python

using Transformer-based models.

• Tool: Facebook’s TransCoder automatically converts

code between multiple programming languages.

AI-based Test Case Generation

Automated testing is essential for refactoring legacy systems

without introducing regressions.

• AI Test Generators: ML models generate test cases

based on historical bug reports and runtime behavior.

• Mutation Testing: AI modifies small parts of the code to

check if the test suite is robust enough to detect errors.

AI-driven Code Review and Quality Assurance

AI-assisted code reviews reduce manual effort in identifying

issues before deployment.

AI-enhanced Code Review Tools

AI-powered tools suggest improvements based on best coding

practices.

• Example: GitHub’s Copilot suggests real-time code

improvements during development.

AI-based Security Audits

AI detects security flaws and suggests fixes.

• Example: AI-powered penetration testing tools scan

applications for vulnerabilities before deployment.

AI-Driven Tools and Methodologies for Code

Refactoring

AI-driven code refactoring tools and methodologies

streamline the process of modernizing legacy codebases,

making them more maintainable, efficient, and scalable. This

section explores various AI-powered tools, techniques, and

frameworks that automate refactoring and improve software

quality. [5], [7]

AI-Driven Code Refactoring Methodologies

Refactoring is the process of restructuring code without

altering its functionality. AI-powered methodologies assist

developers in automating and optimizing this process,

reducing manual effort and improving code quality.

Automated Code Smell Detection

AI models detect bad coding practices and suggest

improvements, helping maintain clean and efficient code.

• Deep Learning for Code Quality: AI models trained on

large codebases identify common code smells like

duplicate code, long methods, and excessive nesting.

• Rule-based vs. ML-based Analysis: Traditional static

code analysis tools use predefined rules, whereas AI

models learn from real-world patterns and adapt over

time.

AI-Assisted Modularization and Code Splitting

Legacy systems often suffer from monolithic structures that

make maintenance difficult. AI-driven techniques help

modularize and break down large components.

• Graph-Based Code Segmentation: AI analyzes

function dependencies to identify independent modules.

• Refactoring Monoliths to Microservices: AI tools

suggest breaking large applications into microservices

based on usage patterns and dependencies.

AI for Code Simplification and Readability Improvement

AI models transform complex, deeply nested, or redundant

code into a more readable structure.

• Seq2Seq Models for Code Simplification: Neural

networks trained on large datasets convert convoluted

logic into cleaner versions.

• AI-assisted Documentation: AI generates meaningful

comments and explanations for legacy code to aid

understanding.

AI-Driven Code De-duplication

Duplicate code increases maintenance efforts and bug-fixing

complexity. AI tools automatically detect and remove

redundancy.

• Code Clone Detection: AI uses similarity analysis to

identify redundant code across projects.

• Function Merging: AI suggests consolidating repetitive

code into reusable functions or modules.

AI-Powered Tools for Code Refactoring

Several AI-driven tools are available to assist in automated

code refactoring, each offering unique capabilities to improve

maintainability, readability, and performance.

https://najer.org/najer

Volume 6 Issue 1, January-March 2025

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

Facebook’s TransCoder

• Description: AI-based tool that translates code from one

programming language to another (e.g., COBOL to Java,

Java to Python).

• Methodology: Uses transformer models trained on

millions of code samples to ensure accurate language

translation while preserving logic.

• Use Case: Modernizing legacy applications written in

outdated languages.

Codex (OpenAI's GPT-based Model)

• Description: AI-powered code generation and

refactoring tool that suggests optimized code structures

and fixes common errors.

• Methodology: Uses deep learning and natural language

processing (NLP) to understand developer intent and

provide intelligent code suggestions.

• Use Case: Assists in rewriting complex functions for

better efficiency and readability.

SonarQube (with AI Enhancements)

• Description: Popular static analysis tool that integrates

AI-driven code quality analysis and refactoring

suggestions.

• Methodology: Uses machine learning models trained on

vast datasets to detect anti-patterns, security

vulnerabilities, and performance bottlenecks.

• Use Case: Identifying and fixing code smells, security

vulnerabilities, and maintainability issues.

CodeBERT and GraphCodeBERT

• Description: Pretrained AI models specialized in

understanding and generating high-quality source code.

• Methodology: Uses transformers and graph-based

learning to detect code clones, predict refactoring

recommendations, and auto-generate optimized code.

• Use Case: Automated function extraction, method

restructuring, and variable renaming for better clarity.

DeepCode (by Snyk)

• Description: AI-powered code analysis tool that

provides real-time refactoring suggestions based on best

practices.

• Methodology: Uses ML models trained on open-source

repositories to suggest security fixes, bug resolutions, and

performance optimizations.

• Use Case: Improving code reliability and security

through AI-enhanced insights.

Refact.ai

• Description: AI-powered tool that automatically

suggests code optimizations and refactoring strategies

based on deep learning models.

• Methodology: Analyzes code structure, usage patterns,

and historical refactoring data to generate transformation

suggestions.

• Use Case: Assists in modularization, function extraction,

and performance tuning.

ChatGPT for Code Review and Refactoring

• Description: AI-driven conversational assistant that

helps developers rewrite, optimize, and refactor code

through natural language interaction.

• Methodology: Uses deep learning models trained on vast

programming datasets to understand developer queries

and suggest improved code structures.

• Use Case: Helps in on-the-fly code refactoring and

explaining complex legacy code sections.

AI in Continuous Refactoring and DevOps

AI-driven refactoring is not just a one-time process but can be

integrated into the software development lifecycle (SDLC) for

continuous improvement. [3]

AI-Driven CI/CD Pipeline Integration

• AI-powered tools can be integrated into Continuous

Integration/Continuous Deployment (CI/CD) pipelines to

automatically analyze, refactor, and optimize code before

production deployment.

• Example: AI-based code analysis tools like SonarQube

and DeepCode can be integrated with Jenkins, GitHub

Actions, or GitLab CI/CD.

AI-Powered Refactoring as a Service (RaaS)

• Some platforms offer Refactoring as a Service, where

AI continuously monitors and suggests refactoring

recommendations.

• Example: Cloud-based AI-assisted refactoring tools that

analyze code repositories and suggest improvements in

real-time.

AI in Pair Programming and Assisted Development

• AI can act as a virtual pair programmer, assisting

developers in real-time with code suggestions, bug fixes,

and refactoring strategies.

• Example: GitHub Copilot suggests refactoring

techniques as developers write code.

Challenges and Limitations of AI-Driven Code

Refactoring

While AI-driven tools and methodologies significantly

enhance code refactoring, they also present challenges:

• Context Understanding Limitations: AI models may

misinterpret complex business logic or domain-specific

code.

• False Positives in Code Smell Detection: AI tools

sometimes flag correct code as inefficient or redundant.

• Scalability Issues: Large enterprise applications with

millions of lines of code may require significant

computational resources for AI-driven analysis.

• Human Oversight Required: AI-assisted refactoring

suggestions should always be reviewed by developers

before implementation.

https://najer.org/najer

Volume 6 Issue 1, January-March 2025

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

• Language and Framework Dependencies: Some AI

models work better for specific programming languages

and may not generalize well to all frameworks.

Case Studies and Industry Implementations of

AI-Powered Code Modernization
AI-driven code modernization is being adopted across various

industries to enhance software maintainability, reduce

technical debt, and optimize performance. This section

highlights real-world case studies where AI and ML

techniques have been successfully implemented for legacy

code refactoring. [2], [5]

Case Study 1: AI-Powered Code Refactoring at Microsoft

(Roslyn Compiler and DeepDev AI)

Background:

Microsoft has heavily invested in AI-driven tooling to

improve developer productivity and optimize legacy code.

The Roslyn compiler for .NET was one of the first major

projects to integrate AI-assisted code analysis. Later,

Microsoft introduced DeepDev AI, an internal ML-based tool

that automatically detects and suggests code improvements.

AI Techniques Used:

• Neural Networks for Code Analysis: Microsoft trained

models on millions of open-source and proprietary

codebases to recognize inefficient patterns.

• Code Transformations: AI suggests modern C# idioms

and optimal data structures.

• Automated Bug Detection: AI detects potential runtime

issues before deployment.

Outcome:

• Reduced code complexity by 30% in large .NET projects.

• Increased developer efficiency by automating mundane

refactoring tasks.

• Improved system performance by 20% through AI-

optimized code transformations.

5.2 Case Study 2: Google’s DeepMind for Python Code

Optimization

Background:

Google’s DeepMind has developed AI models for optimizing

Python-based applications, especially those running in

Google Cloud and TensorFlow environments. Google’s

legacy code contained redundant loops, inefficient recursion,

and non-optimal data processing functions.

AI Techniques Used:

• Graph-Based Neural Networks: AI analyzes the flow of

data in Python functions and restructures them for

efficiency.

• Code2Vec & CodeBERT: AI understands function

behavior and suggests optimized implementations.

• Automated Parallelization: AI rewrites serial

computations into parallelized versions.

Outcome:

• Achieved a 40% reduction in runtime for ML

model execution in TensorFlow.

• Improved memory management, reducing

unnecessary object allocations.

• Successfully migrated legacy Python 2 code to

Python 3 with minimal human intervention.

Case Study 3: Facebook’s AI-Powered Code Review

(Sapienz & Aroma)

Background:

Facebook’s large-scale infrastructure requires continuous

code refactoring to maintain performance and security. The

company developed two AI tools, Sapienz (for bug detection)

and Aroma (for AI-assisted code completion and

refactoring).

AI Techniques Used:

• Pattern Matching with ML: AI learns from past code

changes to predict future optimizations.

• Mutation Testing: AI generates multiple variants of the

same code and benchmarks their performance.

• Intelligent Code Cloning: Aroma suggests commonly

used refactoring techniques to improve maintainability.

Outcome:

• Detected and fixed 80% more bugs than traditional

static analysis tools.

• Reduced developer review time by 50% for large

codebases.

• Increased performance of internal services by 15-

25% through AI-assisted optimizations.

Case Study 4: AI-Driven Refactoring in the Banking

Sector (JPMorgan Chase’s COiN Platform)

Background:

JPMorgan Chase had millions of lines of COBOL and Java

code running on legacy banking systems. Manual refactoring

was impractical, so the company implemented AI-powered

solutions using its COiN (Contract Intelligence) Platform.

AI Techniques Used:

• Natural Language Processing (NLP) for Code

Comprehension: AI reads and translates COBOL to

Java.

• Reinforcement Learning for Code Optimization: AI

learns the best refactoring strategies based on past

migrations.

• Automated Dependency Resolution: AI resolves library

and framework mismatches during migration.

Outcome:

• 90% automation of COBOL-to-Java migration, saving

thousands of developer hours.

• Reduced system downtime by 60% during

modernization efforts.

https://najer.org/najer

Volume 6 Issue 1, January-March 2025

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

• Improved maintainability, enabling seamless adoption of

cloud-based infrastructure.

Case Study 5: AI-Powered Game Code Optimization at

Ubisoft

Background:

Ubisoft’s game engines contain a mix of legacy C++ and

newer scripting languages like Python and Lua. Performance

is critical in real-time gaming, and AI-driven refactoring was

introduced to optimize game logic.

AI Techniques Used:

• AI-Based Profiling: Machine learning detects

bottlenecks in game loops.

• Code Transformation Models: AI rewrites inefficient

game physics calculations.

• Automated Multi-Threading: AI transforms single-

threaded functions into multi-threaded versions.

Outcome:

• Reduced frame latency by 35%, improving real-time

rendering.

• Enabled large-scale optimizations without breaking game

mechanics.

• Shortened development cycles by 25% through AI-

assisted debugging.

Lessons Learned from AI-Driven Code Modernization

From these case studies, we derive the following key insights:

• AI Reduces Manual Effort: Automating refactoring

cuts down on development time and costs.

• Performance Gains Are Significant: AI-driven

optimizations result in measurable improvements in

speed and efficiency.

• Security and Reliability Improve: AI can detect

vulnerabilities often missed by traditional methods.

• Hybrid Approaches Work Best: Combining AI with

human oversight ensures high-quality results.

• Industry-Specific AI Models Are Needed: Different

domains require customized AI strategies for effective

modernization.

Challenges and Limitations of AI-Driven

Refactoring
While AI-driven refactoring presents a promising solution for

modernizing legacy codebases, it is not without its challenges

and limitations. This section explores key issues that hinder

the widespread adoption of AI-powered code optimization,

categorized into technical, ethical, and operational challenges.

Technical Challenges

Code Comprehension and Semantic Understanding

AI models, particularly those trained on large-scale

codebases, often struggle with understanding the

intent behind a given piece of code. While AI can identify

redundant patterns and suggest improvements, it lacks true

semantic comprehension like an experienced developer. [4]

• Challenge: AI might generate syntactically correct

refactored code that does not preserve the original

business logic.

• Example: AI may optimize loops and conditionals for

speed but inadvertently alter the behavior of financial

calculations in a banking application.

Lack of Context Awareness

AI models typically analyze code in isolated chunks, making

them unaware of the broader application context,

dependencies, and architectural decisions.

• Challenge: AI-driven refactoring may introduce

breaking changes by modifying functions without

considering their impact on the system.

• Example: Refactoring a class in a microservices-based

system without recognizing its dependencies on other

services.

Generalization Across Different Programming Languages

AI models are often trained on specific languages (e.g.,

Python, Java, C++), making cross-language refactoring

challenging.

• Challenge: AI models must be retrained or fine-tuned for

each language and framework.

• Example: An AI model trained on Java refactoring

patterns may not work effectively for COBOL or C++.

Handling Legacy and Obscure Codebases

Legacy codebases often contain outdated practices,

deprecated libraries, and undocumented logic that AI

struggles to interpret.

• Challenge: AI may fail to suggest meaningful

improvements for highly outdated or proprietary code.

• Example: An AI model refactoring old COBOL banking

systems may not recognize industry-specific macros or

custom-built logic.

Scalability and Performance of AI Models

AI-driven refactoring tools often require

significant computational resources to analyze and optimize

large-scale enterprise applications.

• Challenge: Running deep learning models on millions of

lines of code can be computationally expensive.

• Example: Processing a monolithic codebase with AI may

take hours or days, making real-time optimization

impractical.

Ethical and Trust-Related Challenges [8]

Trust and Explainability of AI-Generated Code

AI-generated code is often seen as a black box, making it

difficult for developers to trust its recommendations.

• Challenge: Developers may hesitate to accept AI-driven

changes without clear explanations.

https://najer.org/najer

Volume 6 Issue 1, January-March 2025

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

• Example: An AI model refactoring cryptographic

functions without explaining the rationale behind its

modifications.

AI Bias and Training Data Limitations

AI models learn from existing codebases, which may

contain biased, outdated, or inefficient coding practices.

• Challenge: AI may reinforce poor coding habits if trained

on suboptimal datasets.

• Example: If an AI model is trained on open-source

repositories with inconsistent naming conventions, it may

suggest subpar naming standards.

Intellectual Property and Security Risks

Many AI models rely on large-scale datasets that include

both proprietary and open-source code.

• Challenge: AI-driven refactoring tools may inadvertently

generate code that resembles copyrighted or patented

software.

• Example: An AI model trained on proprietary enterprise

codebases may unknowingly suggest code snippets that

violate IP agreements.

Ethical Concerns in Job Displacement

AI-driven automation raises concerns about developer job

security, as AI-powered tools increasingly take over routine

code maintenance tasks.

• Challenge: Organizations must balance AI adoption with

workforce sustainability.

• Example: A company using AI to refactor large portions

of its codebase may reduce reliance on junior developers.

Operational and Adoption Challenges

Integration with Existing Development Workflows

AI-based refactoring tools must be seamlessly

integrated into CI/CD pipelines, IDEs, and version control

systems.

• Challenge: Organizations may struggle with

integrating AI-driven refactoring into their existing

DevOps workflows.

• Example: An AI tool suggesting code changes that

conflict with manually written code reviews in a pull

request.

Resistance from Development Teams

Developers often prefer manual control over refactoring,

leading to resistance in trusting AI-driven solutions.

• Challenge: Adoption of AI-driven refactoring tools

requires a cultural shift among developers.

• Example: Senior developers may reject AI-

generated code due to skepticism about its

correctness.

Cost of AI Implementation and Training

Deploying AI-driven refactoring tools requires significant

investment in AI infrastructure, training, and

maintenance.

• Challenge: Small and mid-sized enterprises may

find it cost-prohibitive to implement AI-powered

refactoring.

• Example: Training a deep learning model for code

optimization requires high-performance computing

resources.

Legal and Compliance Barriers

Many industries (e.g., healthcare, finance) operate under

strict regulatory and compliance requirements that AI-

driven refactoring must adhere to.

• Challenge: AI-generated code must comply with

legal standards and industry regulations.

• Example: AI-refactored financial software must

adhere to SEC or GDPR compliance

requirements.

Mitigation Strategies for AI-Driven Refactoring Challenges

Despite these challenges, several strategies can help improve AI-driven refactoring:

Challenge Mitigation Strategy

Code comprehension issues Use hybrid AI-human approaches, where AI suggests changes and developers validate them.

Lack of context awareness Integrate AI with static and dynamic analysis tools to consider broader system context.

Language-specific limitations Develop multi-language AI models that understand cross-language patterns.

Scalability and performance Optimize AI models with incremental learning to focus on high-impact areas first.

Trust and explainability Implement explainable AI (XAI) techniques to provide reasoning behind AI-driven changes.

Bias in training data Use high-quality, curated datasets and enforce coding best practices.

Intellectual property risks Ensure ethical AI training practices and avoid scraping proprietary code without permission.

Developer resistance Provide training and awareness programs to help teams embrace AI-driven tools.

Integration with workflows Build AI-driven refactoring as plugins for popular IDEs and CI/CD pipelines.

Cost concerns Use cloud-based AI refactoring services to reduce infrastructure costs.

Legal and compliance barriers Work with compliance teams to ensure AI-refactored code adheres to industry regulations.

https://najer.org/najer

Volume 6 Issue 1, January-March 2025

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

Future Directions in AI-Assisted Software

Optimization
The future of AI-assisted software optimization is poised for

significant advancements, driven by improvements in

machine learning algorithms, deeper integration with

development workflows, and a stronger emphasis on

explainability and trust. This section explores emerging

trends, research directions, and the evolving role of AI in

software development.

Advancements in AI Models for Code Optimization

Transformer-Based AI for Code Understanding

Recent breakthroughs in AI, such as transformer-based

architectures (e.g., OpenAI Codex, GitHub Copilot, Google

AlphaCode), have demonstrated remarkable improvements in

code generation and refactoring. [1][7]

• Future Direction: AI models will become more adept at

understanding context, logic, and intent rather than just

recognizing patterns.

• Example: A future AI model could analyze a complete

codebase, understand its design patterns, and suggest

refactorings that align with best practices while

preserving business logic.

Self-Learning AI Models with Reinforcement Learning

Traditional AI-driven refactoring relies on pre-trained models.

Future systems could continuously learn and improve by

using reinforcement learning techniques.

• Future Direction: AI models could evolve by observing

developers' corrections and adapting their

recommendations accordingly.

• Example: An AI tool that suggests a refactoring but

improves over time by learning from developer feedback,

ultimately making more accurate and useful suggestions.

Multi-Modal AI for Software Optimization

Current AI models focus primarily on textual code analysis.

Future AI systems may combine:

• Static code analysis (examining source code structure)

• Dynamic analysis (observing runtime behavior)

• Code documentation (understanding comments and

user intent)

• Version control history (analyzing previous changes)

• Example: An AI-powered tool that suggests

optimizations by correlating runtime performance

metrics with refactoring opportunities.

AI-Augmented Development Environments

AI-Driven Pair Programming and Code Review Assistants

AI will act as a real-time coding assistant, helping

developers refactor code on the fly.

• Future Direction: IDEs will integrate AI-driven

suggestions directly into the coding workflow, much like

an AI-powered pair programmer.

• Example: An AI-enhanced code review tool that not only

flags issues but also suggests optimized alternatives,

complete with explanations.

AI in Continuous Integration/Continuous Deployment

(CI/CD) Pipelines

AI-assisted optimization will extend beyond local

development to influence entire software deployment

pipelines.

• Future Direction: AI will analyze CI/CD workflows and

suggest automation improvements, better dependency

management, and optimized build processes. [8]

• Example: An AI tool that detects performance

regressions and automatically applies optimizations

before merging a pull request.

AI-Driven Code Documentation and Explanation

A major challenge in legacy systems is the lack of

documentation. Future AI tools could automatically generate

meaningful documentation from existing codebases.

• Future Direction: AI-generated documentation that

dynamically updates as the code evolves.

• Example: An AI tool that reads a function, understands

its purpose, and generates clear, human-readable

comments for maintainability.

Explainable AI (XAI) for Code Optimization

One of the biggest hurdles in AI-driven refactoring is the lack

of transparency in AI-generated code changes. Developers

need to understand why a specific change is recommended.

Enhancing Trust Through Explainability

Future AI models will provide step-by-step reasoning for

their recommendations.

• Future Direction: Explainable AI (XAI) techniques will

be applied to code optimization, helping developers trust

AI-driven refactoring.

• Example: Instead of just suggesting a new function, AI

will provide an explanation such as:

"This function contains duplicated logic found in three

other files. Extracting a common utility reduces code

duplication by 40% and improves maintainability."

Interactive AI for Code Validation

Rather than passively accepting AI recommendations,

developers will be able to interact with AI to refine refactoring

suggestions.

• Future Direction: AI models will provide multiple

refactoring options and allow developers to fine-tune

changes.

• Example: A developer can ask the AI, "Can you optimize

this loop without changing its logic?" and receive

alternative solutions.

AI-Powered Legacy Code Migration

Many organizations still rely on monolithic legacy

applications written in outdated languages. AI will play a

https://najer.org/najer

Volume 6 Issue 1, January-March 2025

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

critical role in automating migration to modern

architectures.

Automated Language Conversion

Future AI tools will not only refactor code but also migrate

entire applications across programming languages.

• Future Direction: AI models will convert legacy

COBOL, Fortran, or VB applications into modern Java,

Python, or TypeScript solutions while preserving

business logic.

• Example: An AI system that translates legacy COBOL

banking applications into a microservices-based Java

system while maintaining regulatory compliance.

AI-Assisted Cloud and Container Migration

AI will help optimize software for cloud-native

architectures, making it easier to containerize applications

and transition to microservices.

• Future Direction: AI-driven tools will suggest how to

break monolithic applications into microservices and

containerize them for Kubernetes or AWS Lambda.

• Example: A system that identifies tightly coupled

modules in a monolith and suggests a strategy to refactor

them into independent microservices.

AI for Performance Optimization and Security

Beyond code structure improvements, AI will play a role

in enhancing performance and security in software

applications.

AI-Powered Performance Profiling and Optimization

Future AI models will integrate with profiling tools to

suggest runtime optimizations.

• Future Direction: AI will analyze memory usage, CPU

bottlenecks, and inefficient database queries to suggest

performance improvements.

• Example: AI detects that a function is responsible for

80% of response time and suggests an alternative

implementation.

AI in Security-Focused Refactoring

AI will help identify security vulnerabilities and refactor

code to mitigate risks.

• Future Direction: AI will integrate with security

scanners to automatically refactor insecure code.

• Example: AI flags a vulnerable SQL query and rewrites

it to use parameterized queries to prevent SQL injection

attacks.

Democratization of AI-Driven Code Optimization

As AI tools improve, their accessibility will increase, allowing

developers across all levels to leverage AI-driven refactoring.

Open-Source AI Models for Code Optimization

• Future Direction: Open-source AI models will be

developed to allow customization for different coding

environments.

• Example: A community-driven AI model trained on

high-quality software repositories, ensuring best

practices are followed.

AI-Powered Coding Education and Training

• Future Direction: AI-assisted learning platforms will

teach software optimization techniques interactively.

• Example: A coding tutor powered by AI that provides

real-time refactoring suggestions while explaining the

reasoning behind them.

The Road Ahead: AI and Human Collaboration

Despite its advancements, AI will not replace developers but

rather enhance their productivity. Future software

development will be a hybrid of:

• AI-driven automation for repetitive refactoring tasks.

• Human oversight to ensure code quality,

maintainability, and compliance.

• Collaborative AI that works alongside developers rather

than replacing them.

• Final Thought: The future of AI-assisted software

optimization lies in a symbiotic relationship between AI

and human developers, where AI accelerates code

modernization while developers provide critical

decision-making and creativity.

Conclusion: Key Takeaways and

Recommendations
The rapid advancement of AI in software engineering has

transformed the way developers approach code optimization,

particularly in refactoring legacy codebases. This paper has

explored the potential, challenges, and future directions of AI-

driven code optimization. In this final section, we summarize

the key takeaways and provide recommendations for

organizations and developers looking to adopt AI-assisted

software modernization effectively. [3], [4]

Key Takeaways

AI-Driven Code Optimization is No Longer a Future

Concept—It’s a Present Reality

• AI-powered tools like GitHub Copilot, OpenAI Codex,

and Refact.ai are already assisting developers in

generating, refactoring, and optimizing code.

• Companies are using AI models trained on extensive code

repositories to identify inefficiencies, reduce technical

debt, and improve maintainability.

AI Can Enhance Developer Productivity, But It Cannot

Replace Human Oversight

• AI models excel at pattern recognition and suggesting

improvements, but human developers remain essential

for understanding business logic, context, and complex

system architecture.

https://najer.org/najer

Volume 6 Issue 1, January-March 2025

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

• The most effective approach is human-AI

collaboration, where AI provides recommendations and

developers make informed decisions.

Machine Learning Models Can Identify and Fix Common

Code Smells and Performance Bottlenecks

• AI-driven refactoring can automatically detect code

smells such as duplicate code, long methods, and

unnecessary complexity, suggesting best practices for

resolution.

• Advanced AI can also optimize performance issues by

analyzing runtime behavior, memory leaks, and

inefficient database queries.

Challenges and Limitations Still Exist in AI-Driven Code

Refactoring

• Explainability: Many AI-driven refactoring tools act as

black boxes, making it difficult for developers to trust or

understand their recommendations.

• False Positives: AI models may suggest incorrect or

suboptimal changes that do not align with business

requirements.

• Context Awareness: Current AI systems often struggle

with domain-specific optimizations, requiring human

intervention to ensure correctness.

AI-Assisted Legacy Code Migration is an Emerging Use

Case

• AI is becoming a key player in migrating monolithic

applications to microservices and translating

outdated languages into modern ones (e.g., COBOL to

Java).

• Companies adopting AI for automated language

conversion and containerization can significantly

reduce modernization effort and costs.

The Future of AI in Code Optimization Will Be More

Intelligent, Explainable, and Integrated

• AI models will evolve with self-learning

capabilities, multi-modal code analysis, and deep

integration into CI/CD pipelines.

• Future AI-driven tools will provide transparent

explanations for their recommendations, allowing

developers to fine-tune and customize suggestions.

Recommendations for Developers and Organizations

For Developers:

Leverage AI Tools as Assistants, Not Replacements

• Use AI-driven refactoring tools to automate repetitive

tasks, but always validate changes before deployment.

• Focus on understanding the logic behind AI

recommendations to ensure correctness.

Develop AI Literacy in Software Engineering

• Stay updated with AI-driven development tools and best

practices.

• Learn how machine learning models work in the context

of static code analysis, performance profiling, and

security enhancement.

Provide Feedback to Improve AI Models

• Many AI-driven tools improve with user input. Providing

corrections and feedback helps refine AI

recommendations over time.

• Participate in open-source AI projects to enhance AI-

based software development.

Emphasize Explainability and Code Maintainability

• When using AI-generated refactorings, ensure they align

with best coding practices, team standards, and long-

term maintainability goals.

• AI should assist in reducing technical debt rather than

introducing new complexities.

For Organizations & Engineering Teams:

Invest in AI-Powered Development Environments

• Integrate AI-powered tools into IDEs, code review

pipelines, and CI/CD workflows to automate

optimization.

• Adopt AI-driven static and dynamic analysis tools

for real-time code improvements.

Establish AI Governance and Best Practices

• Define clear guidelines for AI-assisted code changes,

ensuring that AI-driven optimizations adhere to security

and performance standards.

• Implement AI explainability frameworks to enhance

trust in AI recommendations.

Use AI to Accelerate Legacy Code Modernization

• Leverage AI-assisted code migration, automated

dependency resolution, and refactoring for large-scale

legacy modernization projects.

• Invest in AI tools that can refactor monolithic

architectures into cloud-native, microservices-based

systems.

Balance AI Automation with Human Supervision

• Ensure that AI-generated code changes undergo human

review before integration.

• Encourage a collaborative AI-driven development

culture, where engineers validate and enhance AI

recommendations.

Prepare for the Next Wave of AI-Powered Software

Development

• Encourage teams to experiment with self-learning AI

models that evolve based on feedback.

• Stay ahead by adopting AI-driven software

performance optimization to improve efficiency,

scalability, and security.

The Road Ahead

AI-driven code optimization is set to revolutionize software

engineering by making legacy code maintenance more

efficient, improving developer productivity, and enabling

https://najer.org/najer

Volume 6 Issue 1, January-March 2025

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

https://najer.org/najer

intelligent refactoring at scale. However, AI should be viewed

as an augmentation tool rather than a replacement for

human expertise.

As AI models evolve, the focus should shift toward:

• Greater explainability and trustworthiness in AI

recommendations

• Seamless integration of AI into development pipelines

• Hybrid AI-human collaboration for optimal software

evolution

By strategically adopting AI-powered tools, organizations and

developers can accelerate modernization efforts, reduce

technical debt, and build future-proof software systems.

References:
[1] A. Smith and J. Doe, "Revolutionizing Software

Development with AI-Based Code Refactoring

Techniques," ResearchGate, 2024. [Online].

Available: https://www.researchgate.net/publication/386

425004_Revolutionizing_Software_Development_with_

AI-based_Code_Refactoring_Techniques.

[2] B. Johnson and K. Patel, "AI-Driven Refactoring for

Addressing Legacy System Challenges," Zencoder AI

Blog, 2024. [Online].

Available: https://zencoder.ai/blog/addressing-legacy-

system-challenges-with-ai-driven-refactoring.

[3] ACT-IAC, "Leveraging AI to Modernize Legacy Code in

Federal Civilian Agencies," ACT-IAC Report, 2024.

[Online].

Available: https://www.actiac.org/system/files/2025-

01/Final%20Deliverable_ACT%20IAC%20ET%20MAI

_Legacy%20Code%20Modernization.pdf.

[4] C. Liu and M. Brown, "AI-Driven Methodologies for

Mitigating Technical Debt in Legacy Systems," SSRN

Electronic Journal, vol. 12, no. 3, 2024. [Online].

Available: https://papers.ssrn.com/sol3/papers.cfm?abstr

act_id=5101827.

[5] D. Green and P. White, "Unlocking AI's Potential:

Strategies for Applying Artificial Intelligence to Legacy

and Complex Codebases," ResearchGate, 2024. [Online].

Available: https://www.researchgate.net/publication/385

737928_UNLOCKING_AI%27S_POTENTIAL_STRA

TEGIES_FOR_APPLYING_ARTIFICIAL_INTELLIG

ENCE_TO_LEGACY_AND_COMPLEX_CODEBASE

S..

[6] E. Martinez and L. Zhao, "Improving Legacy Software

Quality through AI-Driven Code Smell

Detection," Journal of Emerging Technologies and

Applications, vol. 1, no. 1, pp. 126–135, 2024. [Online].

Available: https://www.espjeta.org/Volume1-

Issue1/JETA-V1I1P126.pdf.

[7] F. Williams et al., "Generating Refactored Code

Accurately Using Reinforcement Learning," arXiv

preprint arXiv:2412.18035, 2024. [Online].

Available: https://arxiv.org/abs/2412.18035.

[8] G. Thompson, S. Lee, and R. Kumar, "Trust Calibration

in IDEs: Paving the Way for Widespread Adoption of AI

Refactoring," arXiv preprint arXiv:2412.15948, 2024.

[Online]. Available: https://arxiv.org/abs/2412.15948.

https://najer.org/najer
https://www.researchgate.net/publication/386425004_Revolutionizing_Software_Development_with_AI-based_Code_Refactoring_Techniques
https://www.researchgate.net/publication/386425004_Revolutionizing_Software_Development_with_AI-based_Code_Refactoring_Techniques
https://www.researchgate.net/publication/386425004_Revolutionizing_Software_Development_with_AI-based_Code_Refactoring_Techniques
https://www.actiac.org/system/files/2025-01/Final%20Deliverable_ACT%20IAC%20ET%20MAI_Legacy%20Code%20Modernization.pdf
https://www.actiac.org/system/files/2025-01/Final%20Deliverable_ACT%20IAC%20ET%20MAI_Legacy%20Code%20Modernization.pdf
https://www.actiac.org/system/files/2025-01/Final%20Deliverable_ACT%20IAC%20ET%20MAI_Legacy%20Code%20Modernization.pdf
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5101827
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5101827
https://www.researchgate.net/publication/385737928_UNLOCKING_AI%27S_POTENTIAL_STRATEGIES_FOR_APPLYING_ARTIFICIAL_INTELLIGENCE_TO_LEGACY_AND_COMPLEX_CODEBASES
https://www.researchgate.net/publication/385737928_UNLOCKING_AI%27S_POTENTIAL_STRATEGIES_FOR_APPLYING_ARTIFICIAL_INTELLIGENCE_TO_LEGACY_AND_COMPLEX_CODEBASES
https://www.researchgate.net/publication/385737928_UNLOCKING_AI%27S_POTENTIAL_STRATEGIES_FOR_APPLYING_ARTIFICIAL_INTELLIGENCE_TO_LEGACY_AND_COMPLEX_CODEBASES
https://www.researchgate.net/publication/385737928_UNLOCKING_AI%27S_POTENTIAL_STRATEGIES_FOR_APPLYING_ARTIFICIAL_INTELLIGENCE_TO_LEGACY_AND_COMPLEX_CODEBASES
https://www.researchgate.net/publication/385737928_UNLOCKING_AI%27S_POTENTIAL_STRATEGIES_FOR_APPLYING_ARTIFICIAL_INTELLIGENCE_TO_LEGACY_AND_COMPLEX_CODEBASES
https://www.espjeta.org/Volume1-Issue1/JETA-V1I1P126.pdf
https://www.espjeta.org/Volume1-Issue1/JETA-V1I1P126.pdf
https://arxiv.org/abs/2412.18035
https://arxiv.org/abs/2412.15948

