
North American Journal of Engineering and Research 

Est. 2020 

 

 

 

Volume 3 Issue 4, October-December 2022 

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

https://najer.org/najer 
 

NoSQL Databases Explored: A Comprehensive 

Study of Columnar, Graph, and Document-Based 

Approaches 

Pradeep Bhosale 

Email: bhosale.pradeep1987@gmail.com 

Abstract 

As data volumes, velocity, and variety rapidly expand, NoSQL databases have gained prominence for their ability to scale 

horizontally and handle flexible schemas. This paper provides a comprehensive study of three major NoSQL categories: 

columnar (column-family), graph, and document-based databases. While each addresses limitations of traditional relational 

models, they differ in data modeling, query paradigms, concurrency handling, and typical use cases. We begin by positioning 

NoSQL within the broader database evolution and analyzing why organizations turn to NoSQL solutions, especially in a 

microservices or big data ecosystem. Then, we delve into the design fundamentals of columnar (such as Cassandra, HBase), 

graph (Neo4j, JanusGraph), and document (MongoDB, CouchDB) stores, contrasting how each organizes data, ensures 

consistency, and scales horizontally. 

We also highlight key architectural patterns from CAP theorem trade-offs to advanced indexing and replication strategies 

along with performance benchmarks and references from real-world deployments. Through tables, diagrams, code snippets, 

and best practices, we clarify when to adopt each NoSQL category, the anti-patterns (e.g., misusing graph queries for purely 

relational tasks), and how to harness partitioning or eventual consistency effectively. Ultimately, this paper aims to guide 

architects, data engineers, and software practitioners seeking robust, horizontally scalable data solutions beyond the constraints 

of traditional relational databases 

 

Keywords: NoSQL, Columnar, Graph, Document Databases, Big Data, Scalability, CAP Theorem, Horizontal Partitioning, 

Consistency, Microservices 

Introduction  

 

The Rise of NoSQL 

Rising data volumes and the shift to web-scale or cloud-

native architectures have driven enterprises to reconsider 

the classic relational database model, which can be 

constrained by strict schemas, ACID transactions, or 

vertical scaling limits. NoSQL (“Not Only SQL”) emerged 

as an umbrella term for non-relational data stores that 

prioritize horizontal scalability, flexible schemas, and 

performance under distributed conditions. Initially 

championed by large internet companies (Google, Amazon, 

Facebook), these solutions columnar, graph, document, 

key-value proliferated in open-source projects or 

commercial offerings [1][2]. 

Purpose and Scope 

This paper explores three prominent categories of 

NoSQL solutions: 

• Columnar (Column-Family): E.g., Apache Cassandra, 

HBase. Data is stored by columns, suiting wide, sparse 

data sets. 

• Graph: E.g., Neo4j, JanusGraph. Data is represented as 

nodes and relationships, enabling advanced graph 

traversals. 

• Document: E.g., MongoDB, CouchDB. Flexible 

JSON-like structures stored in “documents,” 

simplifying certain object-like queries. 

We detail how each addresses scalability and 

consistency trade-offs, present typical usage patterns, 

and consider performance, concurrency, and operational 

overhead. 

NoSQL Background and Key Concepts 

What is NoSQL? 

https://najer.org/najer


 

 

Volume 3 Issue 4, October-December 2022 

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

https://najer.org/najer 
 

Originally a rebellious term, “NoSQL” now frequently 

means “Not Only SQL.” While some solutions forsake 

standard SQL entirely, others incorporate partial or 

extended query languages. All share a non-relational 

approach data is not forced into tables with uniform 

columns [3]. Instead, each NoSQL store emphasizes 

particular data structures (e.g., key-value pairs, column 

families, graphs, documents) and concurrency models 

(like eventual consistency). 

 

  Figure 1: NoSQL Umbrella 

 

This paper focuses on columnar, graph, and document 

categories. 

CAP Theorem and Consistency Models 

CAP theorem states a distributed system can only 

strongly guarantee two among Consistency, Availability, 

Partition tolerance. Many NoSQL systems adopt “AP” 

or “CP” stances, tuning consistency per query or offering 

eventual consistency. For instance, Cassandra defaults to 

eventual consistency for read/write operations, whereas 

HBase (often CP) might favor stronger consistency with 

region servers [4]. 

Common Motivations 

Companies often turn to NoSQL for: 

● High write throughput (logging, analytics). 

● Flexible or schemaless data (e.g., user profiles vary 

widely). 

● Large-scale distribution across multiple data centers. 

● Graphs or adjacency-based queries that relational DBs 

handle less efficiently. 

Anti-Pattern: Using a column store for purely 

transactional workflows requiring strong ACID or 

adopting a graph database for simple key-value lookups. 

The synergy lies in selecting the right store for the data’s 

shape and usage patterns. 

Columnar (Column-Family) NoSQL Databases 

Architectural Foundations 

 

Column-family databases store data by columns instead 

of rows, optimizing for wide, sparse data sets with high 

read/write concurrency. Instead of an entire row per user, 

for instance, columnar DBs store sets of columns in 

separate files or structures. Entities can have variable, 

dynamic columns, making them well-suited for “profile 

expansions,” time-series, or wide row designs [5]. 

Popular Examples: Apache Cassandra, HBase (on 

Hadoop). They scale horizontally by partitioning data 

into “nodes” or “regions,” each handling subsets of 

columns or row keys. 

Cassandra: A Closer Look 

Apache Cassandra uses a ring topology. Each node holds 

data for a token range, with configurable replication 

across N nodes. Writes are fast, using a commit log and 

memtable, then flushing to SSTables. It offers tunable 

consistency levels (e.g., QUORUM, ONE, ALL). 

Reading or writing at QUORUM might ensure stronger 

consistency, but at the cost of higher latency [6]. 

# Example Cassandra schema snippet 

CREATE KEYSPACE user_data 

  WITH replication = { 

    'class': 'NetworkTopologyStrategy', 

    'datacenter1': '3' 

  }; 

 

CREATE TABLE user_data.profiles ( 

  user_id text PRIMARY KEY, 

  name text, 

  email text, 

  address text 

); 

 

HBase: Column-Family on Hadoop 

HBase builds on top of HDFS for storage. Data is split 

into regions, each served by a region server. The master 

orchestrates region assignments. HBase’s column 

families store grouped columns, achieving good read 

performance for narrow queries if columns are well-

structured. Commonly used for time-series or wide 

tables with many columns [7]. 

https://najer.org/najer


 

 

Volume 3 Issue 4, October-December 2022 

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

https://najer.org/najer 
 

Strengths and Use Cases 

● High write throughput and horizontal scaling for large 

data. 

● Flexible column families allow new columns without 

schema migrations. 

● Common usage: IoT sensor data, logs, large user 

profile stores, real-time analytics. 

Anti-Patterns in Columnar 

• Frequent row-level transactions with strong ACID 

demands. 

• Complex ad-hoc joins or cross-row references. 

• Excessive columns with minimal usage or random 

naming leading to sprawl and confusion. 

Graph NoSQL Databases 

Graph Fundamentals 

 

A graph database organizes data as nodes (entities) and 

edges (relationships), storing properties on each. This 

model excels at queries about adjacency, paths, or 

pattern matching (e.g., “who are friends-of-friends who 

like X”). Traditional relational systems can handle small 

relationships via join tables but become unwieldy for 

large connected data sets [8]. 

Popular Examples: Neo4j, JanusGraph, ArangoDB 

(which can also do document-based). Graph queries 

often revolve around BFS/DFS or shortest-path 

algorithms, or specialized pattern syntax like Cypher 

(Neo4j) or Gremlin (JanusGraph). 

 

Figure 2: Sample A graph database 

Neo4j: A Classic Graph DB 

Neo4j is known for its ACID transactions, single-node 

storage (though cluster versions exist), and the Cypher 

query language, which matches subgraph patterns. For 

example: 

MATCH (p:Person)-[:FRIEND_OF]->(f:Person) 

WHERE p.name="Alice" 

RETURN f.name 

 

This returns all friends of Alice. Scaling large data sets 

might require sharding or advanced cluster setups. Still, 

for moderate data volumes, it’s quite powerful [9]. 

JanusGraph: Distributed Graph 

JanusGraph uses underlying storage layers (like 

Cassandra or HBase) for data, enabling large, distributed 

graphs. The Gremlin query language navigates 

relationships. Because data is stored in a columnar store, 

partial scans can be done for adjacency queries. The 

overhead is non-trivial, requiring correct indexing and 

data modeling [10]. 

Strengths and Use Cases 

● Social networks (friends, followers), recommendation 

engines, knowledge graphs. 

● Complex relationship queries or dynamic link analysis. 

● Interactive graph traversals with multiple hops. 

Anti-Patterns in Graph Databases 

• Using graph DB for straightforward key-value lookups 

or simple analytics that a relational or doc DB can 

handle. 

• Ignoring indexing: Leading to slow traversals if the 

graph is large but queries not well-indexed. 

• Overcomplicating domain design with dozens of edge 

types or node labels that hamper performance and 

clarity. 

Document-Oriented NoSQL Databases 

Conceptual Overview 

 

Document databases store data in JSON-like structures 

(“documents”). Each document can hold nested objects 

or arrays, avoiding the need for strict column definitions. 

Common queries revolve around fields in these 

documents with partial or flexible matching [11]. 

Leading Examples: MongoDB, CouchDB, RethinkDB. 

Typically they scale horizontally via sharding: each 

shard holds a subset of documents, balancing read/write 

loads. Some support ACID transactions at the document 

or multi-document level, while others focus on simpler 

atomic ops [12]. 

Snippet (MongoDB Document): 

{ 

  "_id": "user123", 

https://najer.org/najer


 

 

Volume 3 Issue 4, October-December 2022 

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

https://najer.org/najer 
 

  "name": "Alice", 

  "email": "alice@example.com", 

  "interests": ["music", "sports"], 

  "address": { 

    "city": "NYC", 

    "zip": 10001 

  } 

} 

 

MongoDB: A Closer Look 

MongoDB organizes data into collections. Each 

document can differ in structure if needed. Queries use a 

JSON-based expression syntax or advanced indexing 

(including geospatial or text). Sharding spreads data 

across cluster nodes based on a shard key. Replication 

sets ensure high availability. For typical web apps with 

flexible data, it’s a top pick [13]. 

CouchDB 

CouchDB emphasizes offline/online sync, using a multi-

master replication model. Each document has a _rev 

field for concurrency conflict detection. Popular in 

scenarios requiring offline-first or distributed edge 

setups with eventual consistency merges. 

Strengths and Use Cases 

• Flexible schema: Rapid iteration for user profiles, 

content management systems. 

● Nested data: Complex embedded structures without 

complex joins. 

● Often simpler developer experience if dealing with 

JSON. 

Anti-Patterns in Document DBs 

• Unbounded Document Growth: Some teams put 

everything in one giant doc, eventually leading to 

performance hits. 

• Misusing references: If you heavily cross-reference doc 

IDs, it might hamper performance or lead to a pseudo-

relational overhead. 

• Ignoring sharding: Large data sets on a single node 

degrade performance or risk node capacity constraints. 

Comparing Columnar, Graph, and Document 

Tabular Comparison 

Aspect Columnar 

(e.g., 

Cassandra) 

Graph (e.g., 

Neo4j) 

Document 

(e.g., 

MongoDB) 

Data 

Model 

Column 

families, wide 

rows 

Nodes, Edges, 

Properties 

JSON-like 

documents 

Typica

l Use 

Cases 

Large scale, 

wide & sparse 

datasets 

Relationship-

intense or 

BFS/DFS 

Flexible 

schema, 

typical web 

data 

Query 

Style 

Key-based, 

partial range 

queries 

Graph queries 

(Cypher/Gre

mlin) 

Field-based 

queries, 

partial 

matches 

Consis

tency 

Model 

Eventual, 

tunable per 

operation 

Often strong 

in single 

instance 

Usually 

eventual or 

partial 

strong 

Scalin

g 

Appro

ach 

Sharding 

across nodes 

in ring or 

region servers 

Some are 

single-

instance, 

some 

distributed 

graph 

solutions 

Horizontal 

shards based 

on ID keys 

 

Table 3: Comparing Columnar, Graph, and Document 

Performance Summaries 

● Columnar: Excels at high write throughput, large scale, 

but more rigid query capabilities. 

● Graph: Optimized for relationships, adjacency queries. 

Scaling large graphs can be complex. 

● Document: Balanced approach for many web or 

microservices use cases, easy to store dynamic fields. 

Anti-Pattern: Overfitting a single NoSQL type for all 

data 

Issue: Trying to store deeply relational or graph data in a 

doc DB, or vice versa. 

Remedy: Evaluate data access patterns, relationships, 

https://najer.org/najer


 

 

Volume 3 Issue 4, October-December 2022 

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

https://najer.org/najer 
 

and scale demands to pick the suitable store (or 

combination) for each domain. 

Consistency and Replication 

Eventual Consistency 

Many NoSQL solutions adopt eventual consistency, 

enabling better availability under partitions. Cassandra 

or Dynamo-style approaches let each node accept writes, 

replicating in the background. Conflicts are resolved by 

“last write wins” or version vectors [14]. 

Strong Consistency 

Some systems (like HBase, or a specialized setting in 

MongoDB with majority write concerns) can ensure 

stronger consistency. Graph DBs like Neo4j might be 

strong on a single node, more complex in cluster mode. 

Transactions and ACID, Revisited 

ACID transactions are historically a relational hallmark. 

Some NoSQL solutions introduced partial or full 

transaction support: 

● MongoDB introduced multi-document ACID 

transactions (in 4.0 onward) for replica sets, though not 

always recommended at large scale. 

● Cassandra has lightweight transactions (CAS) for row-

level checks. 

Anti-Pattern: Relying on full ACID in a distributed 

NoSQL cluster for heavily relational logic might degrade 

performance or complicate design. A simpler approach 

might be eventual consistency with careful application-

level conflict handling [15]. 

Data Modeling Patterns 

Denormalization 

NoSQL typically encourages denormalizing data to 

minimize joins or cross-references. E.g., in a doc DB, 

storing user profile and preferences in one doc reduces 

the overhead of separate tables. In a column store, 

grouping columns for typical query patterns can yield 

faster reads. Graph DBs are less about denormalization, 

more about modeling relationships as edges [16]. 

ID Selection and Partition Keys 

For column stores or doc DBs, picking the right partition 

key is crucial for uniform data distribution. If the key is 

too skewed, hot partitions can hamper performance. For 

doc DBs, a composite key might unify user_id + date, or 

so forth, ensuring well-balanced shards. 

Integrating with Microservices and DevOps 

Microservices Patterns 

Each microservice might own its data store, selecting the 

best NoSQL type for its domain. For example: 

● User-service uses a doc DB (MongoDB). 

● Analytics-service uses Cassandra for time-series event 

data. 

● Recommendation-service uses a graph DB for user-

product relationship queries. 

 
Figure 4: Polyglot storage for microservices 

DevOps Pipelines 

Teams containerize these NoSQL solutions or use 

managed cloud services. CI might test smaller cluster 

topologies, verifying schema updates or consistency. 

Observability instrumentation (e.g., metrics on 

read/write latencies) is essential to detect when scale or 

partition changes are needed [17]. 

Real-World Case Study #1: E-Commerce 

Scenario 

A large e-commerce retailer restructured its monolithic 

DB into microservices. They adopted: 

• MongoDB for user profiles (flexible doc model). 

• Cassandra for orders and user event logs (massive 

scale, eventually consistent writes). 

• Neo4j for product recommendations (graph-based 

“people who bought X also bought Y”). 

Gains and Challenges 

https://najer.org/najer


 

 

Volume 3 Issue 4, October-December 2022 

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

https://najer.org/najer 
 

● Freed dev teams to design DB schemas matching each 

domain’s query patterns. 

● Learned that each DB needed separate ops approaches 

(backups, partition expansions). 

● Observed that the recommendation engine soared in 

performance once graph queries replaced complex 

relational joins [18]. 

Real-World Case Study #2: Social Networking 

Scenario 

A social networking startup stored user relationships in 

a graph DB (JanusGraph over Cassandra). They used doc 

DB for storing user content, and column DB for 

analytics/time-series. Microservices read/write data to 

these storages. The graph approach significantly 

simplified “friend-of-friend” or group membership 

queries. 

Observations 

● They discovered that the combination of JanusGraph + 

Cassandra required careful indexing to handle high 

concurrency. 

● The doc store simplified user feed updates. 

● They overcame multi-DC replication complexities with 

Cassandra-based graph storage, ensuring partial 

availability under partition scenarios. 

Anti-Pattern Recap 

• One-size-fits-all: Using the same NoSQL type for all 

microservice domains. 

• Neglecting cross-service data boundaries: Coupling 

microservices by forcing them to share a single giant 

doc DB or cluster. 

• Underestimating indexing needs: Leading to slow 

queries and scans. 

• Ignoring backups: Failing to have a robust 

backup/restore procedure for distributed, eventually 

consistent data. 

Emerging Trends  

● Multi-model databases, e.g., ArangoDB or Cosmos 

DB, handle doc, graph, and key-value in one system. 

● Serverless NoSQL offerings from cloud providers that 

auto-scale capacity. 

● AI-driven indexing or query optimization in NoSQL 

engines. 

● Graph analytics expansions, bridging the gap between 

OLTP (online transactions) and advanced graph-based 

OLAP queries [19]. 

Best Practices Summary 

• Evaluate Data Model: For relationships or adjacency, 

prefer graph DB. For wide, large data sets with 

consistent access patterns, column store is better. For 

flexible docs or simpler dev, a doc DB. 

• Partition Keys: Carefully pick keys to avoid hotspots or 

uneven distribution. 

• Consistency: Understand how each store manages 

read/write consistency, plan your app logic or fallback 

patterns. 

• Indexing: Over-indexing can hamper writes, under-

indexing leads to slow queries. 

• Scalability & DevOps: Embrace each store’s distinct 

approach to sharding or replication, ensure monitoring 

for node or region-level issues. 

• Security & Backup: Data at rest encryption, backups 

for each cluster, define RPO/RTO for production. 

• Training: NoSQL adoption requires devs and DBAs to 

shift from relational mindset, embracing new query 

patterns. 

Conclusion 

NoSQL databases have redefined data storage for 

modern, distributed, and large-scale applications, 

offering specialized data models columnar, graph, 

document that address specific performance or flexibility 

demands. By capturing columnar approaches (such as 

Cassandra, focusing on wide row data and partitioned 

clusters), graph solutions (like Neo4j, oriented around 

relationships and graph traversals), and document stores 

(MongoDB’s flexible JSON structure), we see a broad 

spectrum of use cases benefiting from non-relational 

models. 

While each approach solves certain limitations of the 

relational era, adopting NoSQL effectively demands 

careful planning: evaluating consistency vs. availability, 

designing appropriate partition or shard keys, ensuring 

advanced indexing, and planning for backups or cross-

region replication. In the realm of microservices, it’s 

common to see a polyglot approach where each service 

chooses the NoSQL type that best suits its domain data 

and queries, orchestrated by DevOps and SRE teams 

with robust deployment and CI/CD pipelines. 

Ultimately, NoSQL is not a universal silver bullet but 

rather a set of specialized tools. Understanding 

columnar, graph, and document-based solutions along 

https://najer.org/najer


 

 

Volume 3 Issue 4, October-December 2022 

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

https://najer.org/najer 
 

with best practices for data modeling, scaling, 

concurrency, and dev workflows empowers architects 

and developers to build systems that are both flexible and 

scalable under real-time, cloud-native conditions. 

References 

[1] Fowler, M. and Lewis, J., “Microservices Resource 

Guide,” martinfowler.com, 2016. 

[2] Newman, S., Building Microservices, O’Reilly Media, 

2015. 

[3] Stonebraker, M., “One Size Fits All? Ten Years Later,” 

Communications of the ACM, 2016. 

[4] Amazon Dynamo Paper, ACM Symposium on 

Operating Systems Principles, 2007. 

[5] HBase Documentation, “Columnar Data Model for 

Large Datasets,” 2018. 

[6] Cassandra Documentation, cassandra.apache.org, 

Accessed 2021. 

[7] Netflix Tech Blog, “Large-Scale Writes with 

Cassandra,” 2017. 

[8] Neo4j Whitepaper, “Graph Databases for Connected 

Data,” 2018. 

[9] Brandolini, A., Introducing EventStorming, Leanpub, 

2013. 

[10] JanusGraph Documentation, “Distributed Graph Over 

Cassandra,” 2019. 

[11] MongoDB Documentation, mongodb.com/docs, 

Accessed 2021. 

[12] CouchDB Documentation, couchdb.apache.org, 

Accessed 2020. 

[13] Blum, A. and Mansfield, G., “MongoDB Multi-

Document Transactions,” ACMQueue, 2019. 

[14] G. Cockcroft, “Consistency in Cassandra,” ACM 

DevOps Conf, 2018. 

[15] DataStax Blog, “Lightweight Transactions in 

Cassandra,” 2018. 

[16] M. Turnbull, The Kubernetes Book, Independently 

Published, 2018. 

[17] Gilt Tech Blog, “Polyglot Persistence in 

Microservices,” 2019. 

[18] Krishnan, S., “Scaling Real-Time Graph Queries in 

Social Networks,” ACM SoCC, 2020. 

[19] CNF Whitepaper, “Multi-Model NoSQL Approaches,” 

Oct 2022.

 

https://najer.org/najer

